Skip to main content
Log in

Immunomodulatory activity of betulinic acid by producing pro-inflammatory cytokines and activation of macrophages

  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Betulinic acid (BA), a pentacyclic triterpene isolated fromLycopus lucidus, has been reported to be a selective inducer of apoptosis in various human cancer and shown anti-inflammatory and immunomodulatory properties. We postulated that BA modulates the immunomodulatory properties at least two groups of protein mediators of inflammation, interlukin-1β (IL-1β) and the tumor necrosis factor-a (TNF-α) on the basis of the critical role of the monocytes and tissue macrophages in inflammatory and immune responses. TNF-α and IL-1β were produced by BA in a dose dependent manner at concentration of 0.625 and 10 μg/mL. The production of NO associated withiNOS was inhibited when treated with LPS at the concentration of 2.5 to 20 μg/mL of BA whereas COX-2 expression was decreased at 2.5 to 20 μg/mL. These modulations of inflammatory mediators were examined in LPS-stimulated RAW 264.7 cells and peritoneal macrophages. The morphology of macrophage was also examined and enhanced surface CD 40 molecule was expressed when treated BA at 0.625–5 ¼g/mL with or without LPS. Furthermore, BA (20 μg/mL) enhanced apoptosis by producing DNA ladder in the RAW 264.7 cells. Our results indicated that BA induced activation of macrophage and pro-inflammatory cytokines. This may provide a molecular basis for the ability of BA to mediate macrophage, suppress inflammation, and modulate the immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal, B. B., Schwarz, L., Hogan, M. E., and Rando, R. F., Triple helix forming oligodeoxyribonucleotides targeted to the human tumor necrosis factor (TNR) gene inhibit TNR production and block the TNF-dependent growth of human glioblastoma tumor cells.Cancer research, 56, 5156–5164 (1996).

    PubMed  CAS  Google Scholar 

  • Ahmad, N., Chen, L. C., Gordon, M. A., Laskin, J. D., and Laskin, D. L. Regulation of cycloxygenase-2 by nitric oxide in activated hepatic macrophages during acute endotoxemia.J. Leukocyte Biology, 71, 1005–1011 (2002).

    CAS  Google Scholar 

  • Amort, C. H., Scott, K. A., Moore, R. J., Hewer, A., Phillips, D. H., Parker, P., Balkwill, F. R., and Owens, D. M., Tumor necrosis factor-alpha mediates tumor promotio.via a PKC alpha- and AP-1-dependent pathway.Oncogene, 21, 4728–4738 (2002).

    Article  CAS  Google Scholar 

  • Bringmann, G., Saeb, W., Assi, L. A., Francois, G., Sankara Narayanan, A. S., Peters, K., and Peters, E. M., Betulinic acid: isolation from Triphyophyllum peltatum and Ancistrocladus heyneanus, antimalarial activity, and crystal structure of the benzyl ester.Planta Medica, 63, 255–257 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Charles, A. J., Paul, T., and Mark, W., Immunobiology, The immune system in health and disease, Current Biology Publications, London, UK, pp. 300, 1999.

    Google Scholar 

  • Cho, J. Y., Park, J., Yoo, E. S., Baik, K. U., and Park, M. H., Effect of ginseng saponin on tumor necrosis factor-α production and T cell proliferation.Yakhak Hoeji, 43, 296–301 (1998).

    Google Scholar 

  • Choi, Y. E., Ahn, H., and Ryu, J., Polyacetylenes fro.Angelica gigas and their inhibitory activity on nitric oxide synthesis in activated macrophages.Biological and Pharmaceutical Bulletin, 23, 884–886 (2000).

    PubMed  CAS  Google Scholar 

  • Djeu, J. Y., Blanchard, D. K., Richards, A. L., and Friedman, H., Tumor necrosis factor induction b.Candida albicans from human natural killer cells and monocytes.J. Immunology, 141, 4047–4052 (1988).

    CAS  Google Scholar 

  • Fujioka, T., Kashiwada, Y., Kilkuskie, R. E., Cosentino, L. M., Ballas, L. M., Jiang, J. B., Janzen, W. P., Chen, I. S., and Lee, K. H., Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids.J. Natural Products, 57, 243–247 (1994).

    Article  CAS  Google Scholar 

  • Fulda, S., Friesen, C., Los, M., Scaffidi, C., Mier, W., Benedict, M., Nunez, G., Krammer, P. H., Peter, M. E., and Debatin, K. M., Betulinic acid triggers CD95 (APO-1/Fas)- and p53-independent apoptosi.via activation of caspases in neuroectodermal tumors.Cancer Research, 57, 4956–4964 (1997).

    PubMed  CAS  Google Scholar 

  • Fulda, S., Scaffidi, C., Susin, S. A., Krammer, P. H., Kroemer, G., Peter, M. E., and Debatin, K. M., Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid.J. Biological Chemistry, 18, 33942–33948 (1998).

    Article  Google Scholar 

  • Giri, D. K. and Aggarwal, B. B., Constitutive activation of NF-kappa B causes resistance to apoptosis in human cutaneous T cell lymphoma HuT-78 cells. Autocrine role of tumor necrosis factor and reactive oxygen intermediates.J. Biological Chemistry, 273, 14008–14014 (1998).

    Article  CAS  Google Scholar 

  • Hafner, M., Orosz, P., Kruger, A., and Mannel, D. N., TNF promotes metastasis by impairing natural killer cell activity.International J. Cancer, 66, 388–392 (1996).

    Article  CAS  Google Scholar 

  • Hashimoto, F., Kashiwada, Y., Cosentin, L. M., Chen, C. H., Garrett, P.E., and Lee K.H.Bioorganic & Medicinal Chemistry, 5, 2133–2143 (1997).

    Article  CAS  Google Scholar 

  • Hehlgans, T., Stoelcker, B., Stopfer, P., Muller, P., Cernaianu, G., Guba, M., Steinbauer, M., Nedospasov, S. A., Pfeffer, K. and Mannel, D. N., Lymphotoxin-beta receptor immune interaction promotes tumor growth by inducing angiogenesis.Cancer Research, 62, 4034–4040 (2002).

    PubMed  CAS  Google Scholar 

  • Komori, A., Yatsunami, J., Suganuma, M., Okabe, S., Abe, S., Sakai, A., Sasaki, K., and Fujiki, H., Tumor necrosis factor acts as a tumor promoter in BALB/3T3cell transformation.Cancer Research, 53, 1982–1985 (1993).

    PubMed  CAS  Google Scholar 

  • Kronckes, K. D., Fehsel, K., and Kolb-Bachofen, V., Nitric oxide: cytotoxicity versus cytoprotection: how, why, when, and where.Nitric Oxide, 1, 107–120 (1997).

    Article  Google Scholar 

  • Krutmann, J. and Elmets, C. A., Recent studies on mechanisms in photoimmunology.Photochemistry and Photobiology, 48, 787–798 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Moncada, S., Palmer, R. M., and Higgs, E. A., Nitric oxide: physiology, pathophysiology and pharmacology.Pharmacological Reviews, 43, 109–142 (1991).

    PubMed  CAS  Google Scholar 

  • Moore, R. J., Owens, D. M., Stamp, G., Arnott, C., Burke, F., East, N., Holdsworth, H., Turner, L., Rollins, B., Pasparakis, M., Kollias, G., and Balkwill R Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis.Nature medicine, 5, 828–831 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, P. K., Saha, K., Das, J., Pal, M., and Saha, B. P., Studies on the anti-inflammatory activity of rhizomes o.Nelumbo nucifera.Planta Medica, 63, 367–369 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Noel, R. R., Everly, C. M., John, L. R., Herman, P., and Gerald, M. P., The Manual of Clinical Laboratory Immunology, Herman Rriedman, U.S.A., pp. 233–235 (1991).

    Google Scholar 

  • Orosz, P., Echtenacher, B., Ralk, W., Ruschoff, J., Weber, D., and Mannel, D. N., Enhancement of experimental metastasis by tumor necrosis factor.J. Experimental Medicine, 177, 1391–1398 (1993).

    Article  CAS  Google Scholar 

  • Orosz, P., Kruger, A., Hubbe, M., Ruschoff, J., Von Hoegen, P., and Mannel, D. N., Promotion of experimental liver metastasis by tumor necrosis factor.International J. Cancer, 60, 867–871 (1995).

    Article  CAS  Google Scholar 

  • Otto, J. C., DeWitt, D. L., and Smith, W. L.,N-Glycosylation of prostaglandin endoperoxide synthase-1 and 2 and their orientations in the endoplasmic reticulum.J. Biological Chemistry, 68, 18234–18242 (1993).

    Google Scholar 

  • Pisha, E., Chai, H., Lee, I. S., Chagwedera, T. E., Famsworth, N. R., Cordell, G. A., Beecher, C. W., Fong, H. H., Kinghorn, A. D., Brown, D. M., Wani, M. C., Wall, M. E., Hieken, T. J., Das Gupta, T K., and Pezzuto, J. M., Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis.Nature Medicine, 1, 1046–1051 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Roberts, L. K., Smith, D. R., Seilstad, K. H., and Jun, B. D., Photoimmunology: the mechanisms involved in immune modulation by UV radiation.J. Photochemistry Photobiology, 2, 149–177 (1988).

    Article  CAS  Google Scholar 

  • Redo, M. C., Giner, R. M., Manez, S., Gueho, J., Julien, H. R., Hostettmann, K., and Rios, J. L., Investigations on the steroidal anti-inflammatory activity of triterpenoids fro.Diospyros leucomelas.Planta Medica, 81, 9–14 (1995).

    Google Scholar 

  • Schmidt, M. L., Kuzmanoff, K. L., Ling-lndeck, L., and Pezzuto, J. M., Betulinic acid induces apoptosis in human neuroblastoma cell lines.European J. Cancer, 33, 2007–2010 (1997).

    Article  CAS  Google Scholar 

  • Seiber, K., Zhang, Y., Leahy, K., Hauser, S., Masferrer, J., Perkins, W., Lee, L., and Isakson, P., Pharmacological and biochemical demonstration of the role of cycloxygenase-2 in inflammation and pain.Proceedings of the National Academy of Sciences of the United States of America, 91, 12013–12017 (1994).

    Article  Google Scholar 

  • Stuehr, D. J. and Nathan, C. R., Nitric oxide, a macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells.J. Experimental Medicine, 169, 1543–1555 (1989).

    Article  CAS  Google Scholar 

  • Sueoka, E., Sueoka, N., Kai, Y., Okabe, S., Suganuma, M., Kanematsu, K., Yamamoto, T., and Rujiki, H., Anticancer activity of morphine and its synthetic derivative, KT-90, mediated through apoptosis and inhibition of NF-kappa B activation.Biochemical and Biophysical Research Communications, 252, 566–570 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Suganuma, M., Okabe, S., Sueoka, E., lida, N., Komori, A., Kim, S. J., and Fujiki, H., A new process of cancer prevention mediated through inhibition of tumor necrosis factor alpha expression.Cancer Research, 56, 3711–3715 (1996).

    PubMed  CAS  Google Scholar 

  • Suganuma, M., Okabe, S., Marino, M. W., Sakai, A., Sueoka, E., and Fujiki, H., Essential role of tumor necrosis factor alpha (TNF-alpha) in tumor promotion as revealed by TNF- alpha-deficient mice.Cancer Research, 59, 4516–4518 (1999).

    PubMed  CAS  Google Scholar 

  • Suganuma, M., Okabe, S., Kurusu, Iida M., Ohshima, S., Sacki, Y., Kishimoto, T., and Fujiki, H., Discrete roles of cytokines, TNF-a, IL-1, IL-6 in tumor promotion and cell transformation.International J. Oncology, 20, 131–136 (2002).

    CAS  Google Scholar 

  • Yasukawa, K., Takido, M., Matsumoto, T., Takeuchi, M., and Nakagawa, S., Sterol and triterpene derivatives from plants inhibit the effects of a tumor promoter, and sitosterol and betulinic acid inhibit tumor formation in mouse skin two-stage carcinogenesis.Oncology, 48, 72–76 (1991).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungjae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, Y., Han, S., Park, E. et al. Immunomodulatory activity of betulinic acid by producing pro-inflammatory cytokines and activation of macrophages. Arch Pharm Res 26, 1087–1095 (2003). https://doi.org/10.1007/BF02994763

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02994763

Key words

Navigation