Skip to main content
Log in

An immersed-boundary finite-volume method for simulation of heat transfer in complex geometries

  • Published:
KSME International Journal Aims and scope Submit manuscript

Abstract

An immersed boundary method for solving the Navier-Stokes and thermal energy equations is developed to compute the heat transfer over or inside the complex geometries in the Cartesian or cylindrical coordinates by introducing the momentum forcing, mass source/sink, and heat source/sink. The present method is based on the finite volume approach on a staggered mesh together with a fractional step method. The method of applying the momentum forcing and mass source/sink to satisfy the no-slip condition on the body surface is explained in detail in Kim, Kim and Choi (2001, Journal of Computational Physics). In this paper, the heat source/sink is introduced on the body surface or inside the body to satisfy the iso-thermal or iso-heat-flux condition on the immersed boundary. The present method is applied to three different problems : forced convection around a circular cylinder, mixed convection around a pair of circular cylin-ders, and forced convection around a main cylinder with a secondary small cylinder. The results show good agreements with those obtained by previous experiments and numerical simulations, verifying the accuracy of the present method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Eckert, E. R. G. and Soehngen, E., 1952, “Distribution of Heat-Transfer Coefficients Around Circular Cylinders in Crossflow at Reynolds Numbers from 20 to 500,”Trans. ASME, Vol. 75, pp. 343–347.

    Google Scholar 

  • Fadlun, E. A., Verzicco, R., Orlandi, P. and Mohd-Yusof, J., 2000, “Combined Immersed-Boundary Finite-Difference Methods for Three- Dimensional Complex Flow Simulations,”J. Comput. Phys., Vol. 161, pp. 35–60.

    Article  MathSciNet  Google Scholar 

  • Goldstein, D., Handler, R. and Sirovich, L., 1993, “Modelling a No-Slip Flow Boundary with an External Force Field,”J. Comput. Phys., Vol. 105, pp. 354–366.

    Article  Google Scholar 

  • Kim, J., Kim, D. and Choi, H., 2001, “An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries,”J. Comput. Phys., Vol. 171, pp. 132–150.

    Article  MathSciNet  Google Scholar 

  • Lee,C, 2003, “Stability Characteristics of the Virtual Boundary Method in ThreeDimensional Applications,”J. Comput. Phys., Vol. 184, pp. 559–591.

    Article  Google Scholar 

  • Mohd-Yusof, J., 1997, “Combined Immersed-Boundary/B-Spline Methods for Simulations of Flow in Complex Geometries,” Annual Research Briefs, Center for Turbulence Research, NASA Ames and Stanford University.

  • Park, J., Kwon, K. and Choi, H., 1998, “Numerical Solutions of Flow Past a Circular Cylin- der at Reynolds Numbers up to 160,”KSME Int. J., Vol. 12, pp. 1200–1205.

    Article  Google Scholar 

  • Peskin, C. S., 1982, “The Fluid Dynamics of Heart Valves: Experimental, Theoretical and Computational Methods,”Annu. Rev. Fluid Mech., Vol. 14, pp. 235–259.

    Article  MathSciNet  Google Scholar 

  • Saiki, E. M., and Biringen, S., 1996, “Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual Boundary Method,”J. Comput. Phys., Vol. 123, pp. 450–465.

    Article  Google Scholar 

  • Song, C.-J. and Chang, K.-S., 1991, “Heat Transfer and Interactive Buoyant Vortex Shed- ding by a Pair of Circular Cylinders in Transverse Arrangement,”Int. J. Heat Mass Transfer, Vol. 34, No. 6, pp. 1347–1354.

    Article  MathSciNet  Google Scholar 

  • Strykowski, P. J. and Sreenivasan, K. R., 1990, “On the Formation and Suppression of Vortex Shedding at Low Reynolds Numbers,”J. Fluid Mech., Vol. 218, pp. 71–107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haecheon Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Choi, H. An immersed-boundary finite-volume method for simulation of heat transfer in complex geometries. KSME International Journal 18, 1026–1035 (2004). https://doi.org/10.1007/BF02990875

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02990875

Key Words

Navigation