Skip to main content
Log in

Somiglianze e differenze genetiche nei primati e loro implicazioni

Genetic similarities and dissimilarities in primates: implications for the understanding of human evolution

  • Genetica
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

This review is mainly addressed at the genetic similarities and dissimilarities between humans and their closest living relatives: the orangutans, gorillas and chimpanzees. Two main concepts are discussed,i.e. the hierarchical arrangement of diversity and coalescence. Special attention is given to the importance of considering the evolution of coding regions when interpreting experimental data accumulated in the latest years also as a result of genome projects. The selection of comparative experimental data that are discussed cover three main areas: population genetics, comparative genomics and gene expression profiles. Population genetics studies converge in showing that each of the orangutan, gorilla and chimpanzee subspecies harbour an amount of genetic diversity far larger than any human population. This indicates a long-lasting genetic isolation as well as population effective sizes larger than that of human populations ancestral to the extant continental gene pools. The complete sequencing of the chimpanzee genome revealed a 1.23% divergence as compared to human for orthologous regions that can be directly matched. An additional 3% is accounted for by genome regions which are either present or absent in one species only. Some examples of genes for which a prominent role in the emergence of human-specific traits has been advocated, are also discussed. Altogether, in both the human and chimpanzee lineages, genetic novelties mainly consisted in quantitative changes for already existing structures and developmental pathways. Finally, gene expression profiles have been explored to test the hypothesis of a mainly regulatory evolution. In this case, too, the data show a major role for purifying rather than directional selection. Taken together, all the above data display rates and modes of the evolutionary change that are also observed in other mammalian lineages. The final section deals with the taxonomic implications of the recent genetics findings, and the questioned attribution of the species or even higher ranks to extinct forms which mark the lineage leading to modern humans.

Riassunto

In questa rassegna vengono discusse soprattutto quelle caratteristiche genetiche che accomunano o differenziano l’uomo da orango, gorilla e scimpanzè. Sono discussi i concetti di inquadramento gerarchico della diversità e di coalescenza e viene valutato il significato dell’evoluzione delle regioni codificanti per l’interpretazione dei dati sperimentali accumulatisi negli ultimi anni anche come risultato dei progetti di sequenziamento del genoma. I risultati sperimentali citati coprono tre aspetti della comparazione uomo-grandi scimmie: genetica di popolazioni, genomica comparata e profili di espressione genica. Gli studi di genetica delle popolazioni concordano nell’indicare, per le diverse sottospecie di orango, gorilla, e scimpanzè, un grado di diversità genetica assai superiore a quello di qualsiasi popolazione umana, indicativo sia di un isolamento protrattosi per tempi lunghi che di una dimensione della popolazione più grande di quella che ha dato origine alle popolazioni continentali umane. Il sequenziamento completo del genoma dello scimpanzè ha rivelato una divergenza dell’ 1,23% rispetto all’uomo, per le regioni ortologhe, ovvero che possono essere direttamente confrontate. A questo si deve aggiungere il 3% relativo a regioni presenti o assenti in una delle due specie. Vengono illustrati alcuni esempi di geni per i quali è stato proposto un ruolo preminente per la comparsa di caratteristiche peculiari umane. Complessivamente, i dati indicano che nella storia delle linee evolutive umana e dello scimpanzè, la maggioranza delle novità genetiche ha comportato cambiamenti soprattutto di carattere quantitativo di strutture e modalità di sviluppo già esistenti. Infine, i profili di espressione genica sono stati analizzati per saggiare l’ipotesi di un’evoluzione principalmente regolativa. Anche in questo caso i risultati indicano la prevalenza di una selezione naturale contraria a cambiamenti drastici (purificante). Complessivamente questi dati indicano che l’evoluzione delle grandi scimmie e dell’uomo si è svolta secondo modalità e con velocità comuni anche agli altri mammiferi. Infine si discute come, considerando dati interspecifici e intra-specifici, diversi autori hanno messo in discussione l’identificazione di numerose specie nella linea evolutiva che ha condotto all’uomo an atomicamente moderno.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Bibliografia

  • Balding D.J., Bishop M., Cannings C. (eds.), 2001.Handbook of statistical genetics. Chichester, U.K.

  • Beauval C., Maureille B., Lacrampe-Cuyaubere F., Serre D., Peressinotto D., Bordes J.G., Cochard D., Couchoud I., Dubrasquet D., Laroulandie V. et al., 2005.A late Neandertal femur from Les Rochersde-Villeneuve, France. Proc. Natl. Acad. Sci. U.S.A., 102: 7085–7090.

    Article  CAS  Google Scholar 

  • Carroll S.B. 2003.Genetics and the making of Homo sapiens. Nature, 422: 849–857.

    Article  CAS  Google Scholar 

  • Carroll S.B., 2005.Evolution at two levels: on genes and form. PLoS. Biol. 3(7): e245.

    Article  Google Scholar 

  • Chen, F.C., Li W.H., 2001.Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am. J. Hum. Genet., 68: 444–456.

    Article  CAS  Google Scholar 

  • Chimpanzee Sequencing and Analysis Consortium, 2005.Initial sequence of the chemipanzee genome and comparison with the human genome. Nature, 437: 69–87.

    Article  Google Scholar 

  • de Queiroz K., 2005.Different species problems and their resolution. Bioessays, 27: 1263–1269.

    Article  Google Scholar 

  • Dorus S., Vallender E.J., Evans P.D., Anderson J.R., Gilbert S.L., Mahowald M., Wyckoff G.J., Malcom C.M., Lahn B.T., 2004.Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell, 119: 1027–1040.

    Article  CAS  Google Scholar 

  • Enard W., Paabo S., 2004.Comparative primate genomics. Ann. Rev. Genomics Hum. Genet., 5: 351–378

    Article  CAS  Google Scholar 

  • Enard W., Przeworski M., Fisher S.E., Lai C.S., Wiebe V., Kitano T., Monaco A.P., Paabo S., 2002.Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418: 869–872.

    Article  CAS  Google Scholar 

  • Fischer A., Pollack J., Thalmann O., Nickel B., Paabo S., 2006.Demographic history and genetic differentiation in apes. Curr. Biol., 16: 1133–1138.

    Article  CAS  Google Scholar 

  • Gagneux P., Wills C., Gerloff U., Tautz D., Morin P.A., Boesch C., Fruth B., Hohmann G., Ryder O.A., Woodruff D.S., 1999.Mitochondrial sequences show diverse evolutionary histories of African hominoids. Proc. Natl. Acad. Sci. U.S.A., 96: 5077–5082.

    Article  CAS  Google Scholar 

  • Garrigan D., Hammer M.F., 2006.Reconstructing human origins in the genomic era. Nat. Rev. Genet. 7: 669–680.

    Article  CAS  Google Scholar 

  • Garrigan D., Mobasher Z., Severson T., Wilder J.A., Hammer M.F., 2005.Evidence for archaic Asian Ancestry on the human X chromosome. Mol. Biol. Evol., 22: 189–192.

    Article  CAS  Google Scholar 

  • Gilad Y., Oshlack A., Rifkin S.A., 2006a.Natural selection on gene expression. Trends Genet., 22: 456–461.

    Article  CAS  Google Scholar 

  • Gilad Y., Oshlack A., Smyth G.K., Speed T.P., White K.P., 2006b.Expression profiling in primates reveals a rapid evolution of human transcription factors. Nature, 440: 242–245.

    Article  CAS  Google Scholar 

  • Green R.E., Krause J., Ptak S.E., Briggs A.W., Ronan M.T., Simons J.F., Du L., Egholm M., Rothberg J.M., Paunovic M. et al., 2006.Analysis of one million base pairs of Neanderthal DNA. Nature, 444: 330–336.

    Article  CAS  Google Scholar 

  • Lafrate A.J., Feuk L., Rivera M.N., Listewnik M.L., Donahoe P.K., Qi Y., Scherer S.W., Lee C., 2004.Detection of large-scale variation in the human genome. Nat. Genet., 36: 949–951.

    Article  Google Scholar 

  • Jones S., Martin R., Pilbeam D. (eds.) 1992.The Cambridge Encyclopedia of Human Evolution. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Kehrer-Sawatzki H., Cooper D.N., 2007.Understanding the recent evolution of the human genome: insights from human-chimpanzee genome comparisons. Hum. Mutat. 28: 99–130.

    Article  CAS  Google Scholar 

  • Khaitovich P., Hellmann I., Enard W., Nowick K., Leinweber M., Franz H., Weiss G., Lachmann M., Paabo S., 2005.Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science, 309: 1850–1854.

    Article  CAS  Google Scholar 

  • Khaitovich P., Enard W., Lachmann M., Paabo S., 2006.Evolution of primate gene expression. Nat. Rev. Genet., 7: 693–702.

    Article  CAS  Google Scholar 

  • King M.C., Wilson A.C., 1975.Evolution at two levels in humans and chimpanzees. Science, 188: 107–116.

    Article  CAS  Google Scholar 

  • Kitano T., Liu Y.H., Ueda S., Saitou N., 2004.Human-specific amino acid changes found in 103 protein-coding genes. Mol. Biol. Evol., 21: 936–944.

    Article  CAS  Google Scholar 

  • Macaulay V., Hill C., Achilli A., Rengo C., Clarke D., Meehan W., Blackburn J., Semino O., Scozzari R., Cruciani F. et al., 2005.Single, rapid coastal settlement of Asia revealed by analysis of complete mitochondrial genomes. Science, 308 (5724): 1034–1036.

    Article  CAS  Google Scholar 

  • Mayr E., 2004.What makes biology unique? Cambridge University Press, Cambridge, 232 pp.

    Google Scholar 

  • McCollum M.A., Sherwood C.C., Vinyard C.J., Lovejoy C.O., Schachat F., 2006.Of muscle-bound crania and human brain evolution: the story behind the MYH16 headlines. J. Hum. Evol., 50: 232–236.

    Article  Google Scholar 

  • Noonan J.P., Coop G., Kudaravalli S., Smith D., Krause J., Alessi J., Chen F., Platt D., Paabo S., Pritchard J.K. et al., 2006.Sequencing and analysis of Neanderthal genomic DNA, Science, 314: 1113–1118.

    Article  CAS  Google Scholar 

  • Oldham M.C., Horvath S., Geschwind D.H., 2006.Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc. Natl. Acad. Sci., U.S.A., 103: 17973–17978.

    Article  CAS  Google Scholar 

  • Patterson N., Richter D.J., Gnerre S., Lander E.S., Reich D., 2006.Genetic evidence for complex speciation of humans and chimpanzees. Nature, 441: 1103–1108.

    Article  CAS  Google Scholar 

  • Perry G.H., Verrelli B.C., Stone A.C., 2005.Comparative analyses reveal a complex history of molecular evolution for human MYH16. Mol. Biol. Evol., 22: 379–382.

    Article  CAS  Google Scholar 

  • Perry G.H., Tchinda J., McGrath S.D., Zhang J., Picker S.R., Caceres A.M., Iafrate A.J., Tyler-Smith C., Scherer S.W., Eichler E.E. et al., 2006.Hotspots for copy number variation in chimpanzees and humans. Proc. Natl. Acad. Sci., U.S.A., 103: 8006–8011.

    Article  CAS  Google Scholar 

  • Perry G.H., Tito R.Y., Verrelli B.C., 2007.The evolutionary history of human and chimpanzee Y-chromosome gene loss. Mol. Biol. Evol., 24: 853–859.

    Article  CAS  Google Scholar 

  • Raaum R.L., Sterner K.N., Noviello C.M., Stewart C.B., Disotell T.R., 2005.Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J. Hum. Evol., 48: 237–257.

    Article  Google Scholar 

  • Raina S.Z., Faith J.J., Disotell T.R., Seligmann H., Stewart C.B., Pollock D.D., 2005.Evolution of base-substitution gradients in primate mitochondrial genomes. Genome Res., 15: 665–673.

    Article  CAS  Google Scholar 

  • Rosenberg N.A., Nordborg M., 2002.Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat. Rev. Genet., 3: 380–390.

    Article  CAS  Google Scholar 

  • Satta Y., Klein J., Takahata N., 2000.DNA archives and our nearest relative: the trichotomy problem revisited. Mol. Phylogenet. Evol., 14: 259–275.

    Article  CAS  Google Scholar 

  • Stedman H.H., Kozyak B.W., Nelson A., Thesier D.M., Su L.T., Low D.W., Bridges C.R., Shrager J.B., Minugh-Purvis N., Mitchell M.A., 2004.Myosin gene mutation correlates with anatomical changes in the human lineage. Nature, 428: 415–418.

    Article  CAS  Google Scholar 

  • Sterner K.N., Raaum R.L., Zhang Y.P., Stewart C.B., Disotell T.R., 2006.Mitochondrial data support an odd-nosed colobine Glade. Mol. Phylogenet. Evol., 40: 1–7.

    Article  CAS  Google Scholar 

  • Telfer P.T., Souquiere S., Clifford S.L., Abernethy K.A., Bruford M.W., Disotell T.R., Sterner K.N., Roques P., Marx P.A., Wickings E.J., 2003.Molecular evidence for deep phylogenetic divergence in Mandrillus sphinx. Mol. Ecol., 12: 2019–2024.

    Article  CAS  Google Scholar 

  • Templeton A., 2002.Out of Africa again and again. Nature, 416: 45–51.

    Article  CAS  Google Scholar 

  • Tosi A.J., Disotell T.R., Morales J.C., Melnick D.J., 2003.Cercopithecine Y-chromosome data provide a test of competing morphological evolutionary hypotheses. Mol. Phylogenet. Evol., 27: 510–521.

    Article  CAS  Google Scholar 

  • Tosi A.J., Melnick D.J., Disotell, T.R., 2004.Sex chromosome phylogenetics indicate a single transition to terrestriality in the guenons (tribe Cercopithecini). J. Hum. Evol., 46: 223–237.

    Article  Google Scholar 

  • Tosi A.J., Detwiler K.M., Disotell T.R., 2005.X-chromosomal window into the evolutionary history of the guenons (Primates: Cercopithecini). Mol. Phylogenet. Evol., 36: 58–66.

    Article  CAS  Google Scholar 

  • Vargha-Khadem F., Watkins K.E., Price C.J., Ashburner J., Alcock K.J., Connelly A., Frackowiak R.S., Friston K.J., Pembrey M.E., Mishkin M. et al., 1998.Neural basis of an inherited speech and language disorder. Proc. Natl. Acad. Sci. U.S.A., 95: 12695–12700.

    Article  CAS  Google Scholar 

  • Varki A., Altheide T.K., 2005.Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Res., 15: 1746–1758.

    Article  CAS  Google Scholar 

  • Wildman D.E., Uddin M., Liu G., Grossman L.I., Goodman M., 2003.Implications of natural selection in shaping 99.4% nonsynonymous DNA identity between humans and chimpanzees: enlarging genus Homo. Proc. Natl. Acad. Sci. U.S.A., 100: 7181–7188.

    Article  CAS  Google Scholar 

  • Wildman D.E., Bergman T.J., Al-Aghbari A., Sterner K.N., Newman T.K., Phillips-Conroy J.E., Jolly C.J., Disotell T.R., 2004.Mitochondrial evidence for the origin of hamadryas baboons. Mol. Phylogenet. Evol., 32: 287–296.

    Article  CAS  Google Scholar 

  • Xing J., Wang H., Han K., Ray D.A., Huang C.H., Chemnick L.G., Stewart C.B., Disotell T.R., Ryder O.A., Batzer M.A., 2005.A mobile element based phylogeny of Old World monkeys. Mol. Phylogenet. Evol., 37: 872–880.

    Article  CAS  Google Scholar 

  • Xu X., Arnason U., 1996.The mitochondrial DNA molecule of Sumatran orangutan and a molecular proposal for two (Bornean and Sumatran) species of orangutan. J. Mol. Evol., 43: 431–437.

    Article  CAS  Google Scholar 

  • Yang Z., Nielsen R., 1998a.Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J. Mol. Evol., 46: 409–418.

    Article  CAS  Google Scholar 

  • Yang, Z., Nielsen R., Hasegawa M., 1998b.Models of amino acid substitution and applications to mitochondrial protein evolution. Mol. Biol. Evol., 15: 1600–1611.

    CAS  Google Scholar 

  • Yang Z., Nielsen R., 2000a.Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol., 17: 32–43.

    CAS  Google Scholar 

  • Yang, Z., Nielsen, R., Goldman N., Pedersen A.M. 2000b.Codon-substitution models for beterogeneous selection pressure at amino acid sites. Genetics, 155: 431–449.

    CAS  Google Scholar 

  • Yang Z., Nielsen R., 2002.Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol., 19: 908–917.

    CAS  Google Scholar 

  • Zhi L., Karesh W.B., Janczewski D.N., Frazier-Taylor H., Sajuthi D., Gombek F., Andau M., Martenson J.S., O’Brien S.J., 1996.Genomic differentiation among natural populations of orang-utan (Pongo pygmaeus). Curr. Biol., 6: 1326–1336.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Novelletto.

Additional information

Tenuta nella seduta del 10 maggio 2007, in occasione della Giornata Lincea in onore di Camillo, Golgi sul tema «Scimmie uno (s)comodo specchio».

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novelletto, A. Somiglianze e differenze genetiche nei primati e loro implicazioni. Rend. Fis. Acc. Lincei 18, 193–203 (2007). https://doi.org/10.1007/BF02974465

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02974465

Key words

Navigation