Skip to main content
Log in

Water impermeable seed dormancy

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Viable seeds that do not imbibe water and thus fail to germinate in an apparently favorable environment are commonly termed impermeable or hard seed. This physical, exogenous dormancy is especially common in species of the Fabaceae. The ecological significance of hard seed includes the ability to rapidly recolonize burnt areas after fire and to withstand ingestion by animals and birds. Advantages and problems that hard seed cause in agriculture are discussed. Species from different families with impermeable seeds appear to have in common a layer of macrosclerid cells that form a palisade layer in the testa. The term strophiole and its contradictory use in botanical literature are discussed. Genetic factors and environmental conditions both affect the proportion of impermeable seeds produced. Methods of artificially softening impermeable seeds include acid and solvent, soaking, mechanical scarification, pressure, percussion, freezing, heating, and radiation treatments that can result in a change in germination from less than 20% in some untreated species up to 90% or more in treated species. Natural softening involves high temperatures and temperature fluctuations and the degree of desiccation of the seed. The mechanism of water impermeability is related to the testa and is thought to involve waterproofing substances including wax, lignin, tannin, suberin, pectin, and quinone derivatives. The hilum acts as a hygroscopic valve that prevents water uptake but allows water loss to occur at low relative humidities in some species. The strophiole is an area of weakness in the testa of some Papilionoideae while the chalaza region has been determined as an area of weakness inPisum andGossypium. The water impermeable status of some species is reversible at a seed moisture content greater than 10%. The hard seed of a species can be described both in terms of the amount and the degree of impermeability.

Résumé

Les semences viable qui ne s’imbibent pas d’eau et qui par conséquent achouent de germiner dans un environment favorable sont généralement appelées semences impermeables ou dures. Cette exogène dormance physique est spéciallement commune dans les éspèces Fabaceae. L’importance ecologique de semences dures inclue leur capacité de recoloniser rapidement des surfaces brûlées et leur resistance à l’ingestion d’animaux et oiseaux. Les avantages et problèmes que les semences dures occasionment en agriculture sont discutés dans cet article. Des éspèces de differentes familles à semences impermeable semblent avoir en commun une couche de cellules macrosclérides qui forment une couche palissée dans leur tegument. Le terme “strophiole” et ses utilisations contradictoires dans la literature botanique sont soulevés. Les facteurs génétiques et les conditions du milieu affectent la proportion des semences impermeable produites. Les methodes d’amollissement artificielle des semences impermeables comprendent acide et trempage dans un dissolvent, scarification mécanique, pression, percussion, congélation, chauffage et traitements rayonnants peuvent aboutir à un changement en germination de moin 20%, dans quelques éspèces non traitées, jusqu’à 90% ou plus dans éspèces traitées. L’amollissement naturel comprend haute temperature, fluctuations de temperature et degré de desiccation de la semence. Le mécanisme de l’impérméabilité à l’eau est relatif au tégument et on croit qu’il implique des substances impermeables tel que, cire, lignins, tannins, suberine, pectine, et des derivées de quinines. Dans quelques espèces le hile fonctionne comme une valve hygroscopique qui empêche l’absorption d’eau mais permet au perte d’eau d’avoir lieu à des humidités relatives qui sont basses. La strophiole est une zone de faiblesse dans les téguments des Papilionoideae tandis que la region “cholaza” a été déterminée comme une zone de faiblesse dansPisum etGossypium. Dans quelques espèces les qualités de l’impérmeabilité d’eau sont reversibles à une capacité d’humidité de semence supérieure à 10%. La semence dure d’une éspèce peut être définie en terme de quantité et degré d’impermeabilité.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Afanasiev, M. 1944. A study of dormancy and germination of seeds ofCercis canadensis. J. Agric. Res. 69: 405–420.

    CAS  Google Scholar 

  • Aitken, Y. 1939. The problem of hard seeds in subterranean clover. Proc. Roy. Soc. Victoria 51(N.S.): 187–212.

    Google Scholar 

  • Baciu-Miclaus, D. 1970. Contribution to the study of hard seed and coat structure properties of soybean. Proc. Int. Seed Testing Assoc. 35: 599–617.

    Google Scholar 

  • Ballard, L. A. T. 1973. Physical barriers to germination. Seed Sci. & Technol. 1: 285–303.

    Google Scholar 

  • Ballard, L. A. T. 1976. Strophiolar water conduction in seeds ofTrifolieae induced by action on the testa and non-strophiolar sites. Austral. J. Pl. Physiol. 3: 465–469.

    Google Scholar 

  • Ballard, L. A. T. andA. E. Grant Lipp. 1965. Germination of subterranean clover seed in relation to some softening procedures. Proc. Int. Seed Testing Assoc. 30: 893–904.

    Google Scholar 

  • Ballard, L. A. T., S. O. Nelson, T. Buchwald, andL. E. Stetson. 1976. Effects of radiofrequency electric fields on permeability to water of some legume seeds, with special reference to strophiolar condition. Seed Sci. & Technol. 4: 257–274.

    Google Scholar 

  • Barrett-Lennard, R. A. andJ. S. Gladstones. 1964. Dormancy and hard-seededness in Western Australian Serradella (Ornithopus compressus L.). Austral. J. Agric. Res. 15: 895–904.

    Google Scholar 

  • Barton, L. V. 1947. Special studies on seed coat impermeability. Contr. Boyce Thompson Inst. Pl. Res. 14: 355–362.

    Google Scholar 

  • Barton, L. V. 1965. Dormancy in seeds imposed by the seed coat. pp. 727–745.In: Encyclopedia of Plant Physiology (Handbuch der Pflanzenphysiologie). XV: Part 2. ed. W.Ruhland. Springer-Verlag, Berlin.

    Google Scholar 

  • Barton, L. V. 1967. Bibliography of seeds. Columbia Univ. Press, N. Y. 858 pp.

    Google Scholar 

  • Bennett, H. W. 1959. The effectiveness of selection for the hard seed character in crimson clover. Agron. J. 51: 15–16.

    Google Scholar 

  • Bhatnagar, S. P. andB. M. Johri. 1972. Development of angiosperm seeds. pp. 77–149.In: Seed Biology. Vol. I, ed. T. T. Kozlowski. Academic Press, N. Y.

    Google Scholar 

  • Brant, R. E., G. W. McKee, andR. W. Cleveland. 1971. Effect of chemical and physical treatment on hard seed of Penngift crownvetch. Crop Sci. 11: 1–6.

    CAS  Google Scholar 

  • Burns, R. E. 1959. Effect of acid scarification on lupine seed impermeability. Pl. Physiol. (Lancaster) 34: 107–108.

    CAS  Google Scholar 

  • Burton, G. W. andJ. S. Andrews. 1948. Recovery and viability of seeds of certain southern grasses andLespedeza passed through the bovine digestive tract. J. Agric. Res. 76: 95–101.

    Google Scholar 

  • Busse, W. F. 1930. Effect of low temperatures on the germination of seed. Bot. Gaz. (Crawfordsville) 89: 169–179.

    CAS  Google Scholar 

  • Callihan, R. H. The hard seed mechanism inConvolvulus arvensis L. and the influence of environmental variables upon germination. M.S. Thesis, Oregon State University, Corvallis, 86 pp.

  • Carleton, A. E., R. D. Austin, J. R. Stroh, L. E. Wiesner, and J. G. Scheetz. 1971. Cicer milkvetch (Astragalus cicer L.): seed germination, scarification and field emergence studies. Mont. Agric. Exp. Sta. Bull. 655. 21 pp.

  • Cavazza, L. 1951. The effect of alcohol on hard seeds. Nuovo Giorn. Bot. Ital. 58: 393–397. (Ref. Herbage Abstr. 22: 210.

    Google Scholar 

  • Chowdhury, K. A. andG. M. Buth. 1970. Seed coat structure and anatomy of Indian pulses. J. Linn. Soc., Bot. 63: 169–179.

    Google Scholar 

  • Christiansen, M. M. andN. Justus. 1963. Prevention of field deterioration of cottonseed by an impermeable seedcoat. Crop Sci. 3: 439–440.

    Google Scholar 

  • Christiansen, M. M. andR. P. Moore. 1959. Seed coat structural differences that influence water uptake and seed quality in hard seed cotton. Agron. J. 51: 582–584.

    Google Scholar 

  • Christiansen, M. M., R. P. Moore, andC. L. Rhyne. 1960. Cotton seed quality preservation by a hard seed coat characteristic which restricts internal water uptake. Agron. J. 52: 81–84.

    Google Scholar 

  • Coe, H. S. and J. N. Martin. 1920. Sweet clover seed. U. S. D. A. Bull. 844. 39 pp.

  • Come, D. andA. Semadeni. 1973. Degazage des enveloppes seminales lors do leur inhibition. Physiol. Veg. 11: 171–177. Cited by Marbach and Mayer (1974).

    CAS  Google Scholar 

  • Copeland, L. O. 1976. Principles of Seed Science and Technology. Burgess Publishing, Minneapolis, Minnesota. 369 pp.

    Google Scholar 

  • Corner, E. J. H. 1951. The leguminous seed. Phytomorphology 1: 117–150.

    Google Scholar 

  • Corner, E. J. H. 1976. The seeds of dicotyledons. Vol. I and II. Cambridge University Press, Cambridge. 311 and 552 pp.

    Google Scholar 

  • Crocker, W. 1948. Growth of plants. Twenty years’ research at Boyce Thompson Institute. Reinhold Publ. Corp. N. Y. 459 pp.

    Google Scholar 

  • Crocker, W. andL. V. Barton. 1953. Physiology of seeds. An introduction to the experimental study of seed and germination problems. Chronica Botanica Co., Waltham, Massachusetts 267 pp.

    Google Scholar 

  • Davis, P. A. 1928a. High pressure and seed germination. Amer. J. Bot. 15: 149–156.

    Google Scholar 

  • Davis, P. A. 1928b. The effect of high pressure on the percentages of soft and hard seeds inMedicago sativa andMelilotus alba. Amer. J. Bot. 15: 433–436.

    Google Scholar 

  • Dexter, S. T. 1955. Alfalfa seedling emergence from seed lots varying in origin and hard seed content. Agron. J. 47: 357–361.

    Google Scholar 

  • Donnelly, E. D. 1970. Persistence of hard seed inVicia lines derived from interspecific hybridization. Crop Sci. 10: 661–662.

    Google Scholar 

  • Donnelly, E. D. 1971. Breeding hard-seeded vetch using interspecific hybridization. Crop Sci. 11: 721–724.

    Google Scholar 

  • Donnelly, E. D. andE. M. Clark. 1962. Hybridization in the genusVicia. Crop Sci. 2: 141–145.

    Google Scholar 

  • Donnelly, E. D., J. E. Watson, andJ. A. McGuire. 1972. Inheritance of hard seed inVicia. J. Heredity 63: 361–365.

    Google Scholar 

  • Eames, A. J. 1961. Morphology of the angiosperms. McGraw-Hill, N. Y. 518 pp.

    Google Scholar 

  • Eglitis, M. andF. Johnson. 1957. Control of hard seed of alfalfa with high-frequency energy. (Abstr.) Phytopathology 47: 9.

    Google Scholar 

  • el Bagoury, O. H. 1975. Effect of different fertilisers on the germination and hard seed percentage of broad bean seeds (Vicia faba). Seed Sci. & Technol. 3: 569–574.

    Google Scholar 

  • el Bagoury, O. H. andM. A. Niyazi. 1973. Effect of different fertilizers on the germination and hard seed percentages of Egyptian clover seeds (Trifolium alexandrinum L.). Seed Sci. & Technol. 1: 773–779.

    Google Scholar 

  • Elkins, D. M., C. S. Hoveland, andE. D. Donnelly. 1966. Germination ofVicia species and interspecific lines as affected by temperature cycles. Crop Sci. 6: 45–48.

    Google Scholar 

  • Ellis, T. J. andT. P. Palmer. 1973. Heat treatment of hard seed in lucerne. New Zealand J. Exp. Agric. 1: 44–45.

    Google Scholar 

  • Enyard, I. 1957. Effect of liquid N2 and O2 on the germination capacity of hard seeds ofTrifolium hybridum, Medicago sativa andTrifolium pratense. Allionia 3: 23–32 (Ref. Herbage Abstr. 30: 635).

    Google Scholar 

  • Esau, K. 1960. Anatomy of seed plants. J. Wiley & Sons. N. Y. 376 pp.

    Google Scholar 

  • Evanari, M., D. Koller, andY. Gutterman. 1966. Effects of the environment of the mother plant on germination by control of seed coat permeability to water inOnonis sicula Guss. Austral. J. Biol. Sci. 19: 1007–1016.

    Google Scholar 

  • Fahn, A. andE. Werker. 1972. Anatomical mechanisms of seed dispersal. pp. 151–221.In: Seed Biology, Vol. I, ed. T. T. Kozlowski. Academic Press, N. Y.

    Google Scholar 

  • Forbes, I. andH. D. Wells. 1968. Hard and soft seededness in blue lupine,Lupinus angustifolius L. Inheritance and phenotype classification. Crop Sci. 8: 195–197.

    Google Scholar 

  • Gladstones, I. S. 1970. Lupins as crop plants (review article). Field Crop Abstr. 23: 123–148.

    Google Scholar 

  • Gloyer, W. O. 1932. Percentage of hardshell in pea and bean varieties. New York Agric. Exp. Sta. Techn. Bull. 195. 20 pp.

  • Goodenough, J. L., R. B. Stone, andJ. J. McDow. 1970. Effect of direct current glow discharge of germination of cottonseed. Trans. Amer. Soc. Agric. Engin. 13: 354–356.

    Google Scholar 

  • Grant Lipp, A. E. andL. A. T. Ballard. 1959. The breaking of seed dormancy of some legumes by carbon dioxide. Austral. J. Agric. Res. 10: 495–499.

    Google Scholar 

  • Grant Lipp, A. E. andL. A. T. Ballard 1964. The interrelationship of dormancy, size and hardness in seeds ofTrifolium subterraneum L. Austral. J. Agric. Res. 15: 215–222.

    Google Scholar 

  • Gratkowski, H. 1962. Heat as a factor in germination of seeds ofCeanothus velutinus var.Laevigatus T. & G. Ph.D. Thesis, Oregon State University, Corvallis. 122 pp.

    Google Scholar 

  • Gratkowski, H. 1973. Pregermination treatments for redstem ceanothus seed. U.S.D.A. For. Serv. Res. Paper PNW-156, Pacific Northwest Forest and Range Experiment Station, Portland, Oregon. 10 pp.

    Google Scholar 

  • Guppy, H. B. 1912. Studies in seeds and fruits. Williams & Norgate, London. 528 pp.

    Google Scholar 

  • Gutterman, Y. andW. Heydecker. 1973. Studies of the surfaces of desert plant seeds. I. Effect of daylength upon maturation of the seedcoat ofOnonis sicula Guss. Ann. Bot. (London) 37: 1049–1050.

    Google Scholar 

  • Hagon, M. W. 1971. The action of temperature fluctuations on hard seeds of subterranean clover. Austral. J. Exp. Agric. Anim. Husb. 11: 440–443.

    Google Scholar 

  • Hagon, M. W. 1972. Studies on the hardseededness of subterranean clover (Trifolium subterraneum L.) with special reference to the strophiole. M.Sc. Agr. Thesis, Sydney University, NSW, Australia.

    Google Scholar 

  • Hagon, M. W. andL. A. T. Ballard. 1970. Reversibility of strophiolar permeability to water in seeds of subterraneum clover (Trifolium subterraneum L.). Austral. J. Biol. Sci. 23: 519–528.

    Google Scholar 

  • Hamly, D. H. 1932. Softening of the seeds ofMelilotus alba. Bot. Gaz. (Crawfordville) 93: 345–375.

    Google Scholar 

  • Hamly, D. H. 1935. The light line ofMelilotus alba. Bot. Gaz. (Crawfordville) 96: 755–757.

    Google Scholar 

  • Harmon, G. W. andF. D. Keim. 1934. The percentage and viability of weed seeds recovered in the feces of farm animals and their longevity when buried in manure. J. Amer. Soc. Agron. 26: 762–767.

    Google Scholar 

  • Harrington, G. T. 1916. Agricultural value of hard seeds. J. Agric. Res. 6: 761–795.

    Google Scholar 

  • Harrington, J. F. 1949. Hard seeds in bean and other legumes. Seed World 64: 42, 44.

    Google Scholar 

  • Harrington, J. F. 1972. Seed storage and longevity. p. 145–245. In: Seed biology, Vol. III, ed. T. T. Kozlowski. Academic Press, N. Y.

    Google Scholar 

  • Hiltner, L. 1902. Die Keimungvehaltnisse der Leguminosensarren und ihre Beeinflussung duich Organisemenwirkung. Arb. Biol. Abt. Forst. Landu. Ksl. Besdh. Amt. 3: 1–102. Cited Hamly (1932)

    Google Scholar 

  • Hollowell, E. A. andW. E. Knight. 1962. Crimson clover. p. 180–186.In: Forages, the sciences of grasslands agriculture. ed. H. D. Hughes, M. E. Heath, and D. S. Metcalfe. Iowa State Univ. Press, Ames.

    Google Scholar 

  • Hopkins, E. F. 1923. The behavior of hard seeds of certain legumes when subjected to conditions favorable to germination. Proc. Assoc. Off. Seed Analysts, N. Amer. 14: 46–48.

    Google Scholar 

  • Horn, P. E. andG. D. Hill. 1974. Chemical scarification of seeds ofLupinus cosentini Guss. J. Austral. Inst. Agric. Sci. 40: 85–87.

    Google Scholar 

  • Hughes, H. D. 1915. Making legumes grow. Farm and Fireside 38 (19): 7. Cited Rincker (1954).

    Google Scholar 

  • Hutton, M. E. J. andR. H. Porter. 1937. Seed impermeability and viability of native and introduced species ofLeguminosae. Iowa State Coll. J. Sci. 12: 5–24.

    Google Scholar 

  • Hyde, E. O. C. 1954. The function of the hilum in somePapilionaceae in relation to the ripening of the seed and the permeability of the testa. Ann. Bot. (London) 18: 241–256.

    Google Scholar 

  • James, E. B. 1949a. Some factors affecting the production of hard seed in crimson clover. Proc. Assoc. Southern Agric. Workers 1949: 52–53. Cited Crocker and Barton (1953).

    Google Scholar 

  • James, E. B. 1949b. The effect of inbreeding on crimson clover seed coat permeability. Agron. J. 41: 261–266.

    Google Scholar 

  • James, E. B. andT. A. Bancroft 1951. The use of half-plants in a balanced incomplete block in investigating the effect of calcium, phosphorus, and potassium at two levels of each, on the production of hard seed in crimson clover,Trifolium incarnatum. Agron. J. 43: 96–98.

    Google Scholar 

  • Jones, M. E. 1971. Seed scarification. Rhodesia Agric. J. 68: 25, 31.

    Google Scholar 

  • Keya, N. C. O. andC. C. M. van Eijnatten. 1975. Studies on oversowing of natural grasslands in Kenya. I. The effects of seed threshing, scarification, and storage on the germination ofDesmodium uncinatum (Jacq.) D. C. E. African Agric. Forest. J. 40: 261–263.

    Google Scholar 

  • Kirchner, R. andW. D. Andrew. 1971. Effect of various treatments on hardening and softening of seeds in pods of barrel med (Medicago tuncatula). Austral. J. Exp. Agric. Anim. Husb. 11: 536–540.

    Google Scholar 

  • Koller, D. andD. Cohen. 1959. Germination-regulating mechanisms in some desert seeds. VI.Convolvulus lanatus Vahl.,Convolvulus negevensis Zoh, andConvolvulus secundus Desr. Bull. Res. Council. Israel, Sect. D, Bot. 7: 175–180.

    Google Scholar 

  • Koller, D. andM. Negbi. 1955. Germination regulating mechanisms in some desert seeds. V.Colutea istria Mill. Bull. Res. Council. Israel, Sect. D, Bot. 5: 73–84.

    Google Scholar 

  • Kyle, J. H. 1959. Factors influencing water entry through the micropyle inPhaseolus vulgaris L. and their significance in inheritance studies of hard seeds. Thesis, State College of Washington, Pullman, Washington. Cited by Hagon and Ballard (1970).

  • LaCroix, L. J. andD. W. Staniforth. 1964. Seed dormancy in velvetleaf. Weeds 12: 171–174.

    Google Scholar 

  • Leahy, J. 1948. Structure of the cotton seed. pp. 105–116.In: Cottonseed and Cottonseed Products — Their Chemistry and Chemical Technology, ed. A. E. Bailey. Interscience Publishers, Inc., N. Y.

    Google Scholar 

  • Lebedeff, G. A. 1947. Studies on the inheritance of hard seeds in beans. J. Agric. Res. 74: 205–215.

    Google Scholar 

  • Lee, J. A. 1975. Inheritance of hard seed in cotton. Crop Sci. 15: 149–152.

    Google Scholar 

  • Lunden, A. O. andR. C. Kinch. 1957. The effect of high temperature contact treatment on hard seeds of alfalfa. Agron. J. 49: 151–153.

    Google Scholar 

  • Loftus Hills, K. 1944. Dormancy and hard seededness inT. subterraneum. 4. Variations between varieties. J. Council Sci. Res. Australia 17: 242–250.

    Google Scholar 

  • Lute, A. M. 1928. Impermeable seed of alfalfa. Colorado Exp. Sta. Bull. 326. 36. pp.

  • Marbach, I. andA. M. Mayer. 1974. Permeability of seed coats to water as related to drying conditions and metabolism of phenolics. Pl. Physiol. (Lancaster) 54: 817–820.

    CAS  Google Scholar 

  • Marbach, I. andA. M. Mayer. 1975. Changes in catechol oxidase and permeability to water in seed coats ofPisum elatius during seed development and maturation. Pl. Physiol. (Lancaster) 56: 93–96.

    CAS  Google Scholar 

  • Martin, J. N. 1944. Changes in the germination of red clover seed in storage. Proc. Iowa Acad. Sci. 51: 229–233.

    Google Scholar 

  • Martin, J. N. andJ. R. Watt. 1944. The strophiole and other seed structures associated with hardness inMelilotus alba L. andM. officinalis Willd. Iowa State Coll. J. Sci. 18: 457–469.

    Google Scholar 

  • Marttirolo, O. andL. Buscalioni. 1892. Ricerche anatomofisiologribe sui tegumenti seminali dellePapilionaceae. Mem. Reale Accad. Sci. Torino. 42 (ser. 2): 223–318, 359–428. Cited Hamly (1932).

    Google Scholar 

  • Mayer, A. M. andA. Poljakoff-Mayber. 1975. The Germination of Seeds. Pergamon Press, N. Y. 2nd ed. 192 pp.

    Google Scholar 

  • McKee, G. W., R. A. Peiffer, andN. N. Mohsenin. 1977. Seedcoat structure inCoronilla varia L. and its relation to hard seed. Agron. J. 69: 53–58.

    Google Scholar 

  • Midgley, A. R. 1926. Effect of alternate freezing and thawing on the impermeability of alfalfa and dodder seeds. J. Amer. Soc. Agron. 18: 1087–1098.

    Google Scholar 

  • Mijatovic, M. 1971. A study of hard alfalfa seed. U.S.D.A. National Science Foundation, Contemp. Agric. 19(4): 57–69.

    Google Scholar 

  • Nakumura, S. 1962. Germination of legume seeds. Proc. Int. Seed Testing Assn. 27: 694–709.

    Google Scholar 

  • Nelson, S. O. andW. W. Wolf. 1964. Reducing hard seed in alfalfa by radio-frequency electrical seed treatments. Trans. Amer. Soc. Agric. Engin. 7: 116–119.

    Google Scholar 

  • Nelson, S. O., L. E. Stetson, R. B. Stone, J. C. Webb, C. A. Pettibone, D. W. Works, W. R. Kehr, andG. E. VanRiper. 1964. Comparison of infrared radiofrequency and gas-plasma treatments of alfalfa seed for hard-seed reduction. Trans. Amer. Soc. Agric. Engin. 7: 276–280.

    Google Scholar 

  • Nelson, S. O., L. E. Stetson, andD. W. Works. 1968. Hard-seed reduction in alfalfa by infrared and radiofrequency electrical treatments. Trans. Amer. Soc. Agric. Engin. 11: 728–730.

    Google Scholar 

  • Nikolaeva, M. G. 1969. Physiology of deep dormancy in seeds. IPST Press, Jerusalem. 220 pp.

    Google Scholar 

  • Nobbe, F. 1876. Die Handbuch der Samenkunde. Berlin. 631 pp. Cited Hamly (1932).

  • Pammel, L. H. 1899. Anatomical characters of the seeds ofLeguminosae, chiefly general of Gray’s manual. Trans. Acad. Sci. St. Louis 9: 91–274.

    Google Scholar 

  • Pfeiffer, N. E. 1934. Morphology of the seed ofSymphoricarpos racemosus and the relation of fungal invasion of the coat to germination capacity. Contr. Boyce Thompson Inst. Pl. Res. 6: 103–122.

    Google Scholar 

  • Porter, R. H. 1949. Recent developments in seed technology. Bot. Rev. (Lancaster) 15: 221–344.

    CAS  Google Scholar 

  • Quick, C. R. 1961. How long can a seed remain alive? pp. 96–99.In: Seeds. The Yearbook of Agriculture, 1961. U.S. Govt. Printing Office, Washington, D.C.

    Google Scholar 

  • Quinlivan, B. J. 1966. The relationship between temperature fluctuations and the softening of hard seeds in some legume species. Austral. J. Agric. Res. 17: 625–631.

    Google Scholar 

  • Quinlivan, B. J. 1968. The softening of hard seeds of sand-plain lupin (Lupinus varius L.). Austral. J. Agric. Res. 19: 507–515.

    Google Scholar 

  • Quinlivan, B. J. 1971a. Seed coat impermeability in legumes. J. Austral. Inst. Agric. Sci. 37: 283–295.

    Google Scholar 

  • Quinlivan, B. J. 1971b. Embryo dormancy in subterranean clover seeds. II. Its value relative to impermeability in field germination regulation. Austral. J. Agric. Res. 22: 607–614.

    Google Scholar 

  • Raleigh, G. J. 1930. Chemical conditions in maturation, dormancy and germination of seeds ofGymnocladus dioica. Bot. Gaz. (Crawfordville) 89: 273–294.

    CAS  Google Scholar 

  • Reeves, R. G. andC. C. Valle. 1932. Anatomy and microchemistry of the cotton seed. Bot. Gaz. (Crawf ordville) 93: 259–277.

    CAS  Google Scholar 

  • Rincker, C. M. 1954. Effect of heat on impermeable seeds of alfalfa, sweet clover, and red clover. Agron. J. 46: 247–250.

    Google Scholar 

  • Rivera, R., H. W. Popp, andR. B. Dow. 1937. The effect of hydrostatic pressures on seed germination. Amer. J. Bot. 24: 508–513.

    CAS  Google Scholar 

  • Rodriquez, G. 1924. Study of influence of heat and cold on germination of hard seeds in alfalfa and sweet clover. Proc. Assoc. Off. Seed Analysts N. Amer. 16: 75–76.

    Google Scholar 

  • Rusby, H. H. andS. E. Jelliffe. 1899. Morphology and histology of Plants. New Era Printing Co., Lancaster, Pennsylvania. 378 pp.

    Google Scholar 

  • Salisbury, F. B. andC. Ross. 1969. Plant Physiology. Wadsworth, Belmont, California. 747 pp.

    Google Scholar 

  • Scott, F. M., B. G. Bystrom, andE. Bowler. 1962.Cercidium floridum seed coat, light and electron microscopic studies. Amer. J. Bot. 49: 821–833.

    Google Scholar 

  • Shaw, M. F. 1929. A microchemical study of the fruit coat ofNelumbo lutea. Amer. J. Bot. 16: 259–276.

    CAS  Google Scholar 

  • Shillito, N. L. 1974. Contamination problems in herbage seed production. Proc. New Zealand Weed Pest Control Conf. 27: 60–62.

    Google Scholar 

  • Simpson, D. M., C. L. Adams, and G. M. Stone. 1940. Anatomical structure of the cottonseed coat as related to problems of germination. Techn. Bull. U.S.D.A. 734. 23 pp.

  • Spumy, M. 1963. Cell wall structure of epidermal cells of the pea coat (Pisum sativum L.) studied by microcinematography. Mikroskopie 18: 272–279. Cited Spumy (1972).

    Google Scholar 

  • Spurny, M. 1972. The imbibition process. pp. 367–389.In: Seed Ecology. Proc. Nineteenth Easter School in Agric. Sci., University Nottingham, ed. W. Heydecker. Butterworths, London.

    Google Scholar 

  • Sripleng, A. andF. H. Smith. 1960. Anatomy of the seed ofConvolvulus arvensis. Amer. J. Bot. 47: 386–392.

    Google Scholar 

  • Stewart, G. 1926. Effect of color of seeds, of scarification, and of dry heat on the germination of alfalfa seeds and some of its impurities. J. Amer. Soc. Agron. 18: 743–760.

    Google Scholar 

  • Stetson, L. E. andS. O. Nelson. 1972. Effectiveness of hot-air, 39-MHz dielectric and 2450-MHz microwave heating for hard-seed reduction in alfalfa. Trans. Amer. Soc. Agric. Engin. 15: 530–535.

    Google Scholar 

  • Stone, R. B., M. N. Christiansen, S. O. Nelson, J. C. Webb, J. L. Goodenough, andL. E. Stetson. 1973. Induction of germination of impermeable cottonseed by electrical treatment. Crop Sci. 13: 159–161.

    Google Scholar 

  • Stone, E. C. andG. Juhren. 1951. The effect of fire on the germination of the seed ofRhus ovata Wats. Amer. J. Bot. 38: 368–372.

    Google Scholar 

  • Suckling, F. E. T. 1950. The passage of white clover seeds through the body of sheep and the effect on germination capacity. Proc. New Zealand Grasslands Assoc. 12: 108–121.

    Google Scholar 

  • Suckling, F. E. T. 1952. Dissemination of white clover by sheep. New Zealand J. Sci. Technol. A35: 64–77.

    Google Scholar 

  • Thornber, J. J. 1904. Seed germination. Univ. Arizona Agric. Exp. Sta. Annual Rep. 15: 492–493.

    Google Scholar 

  • Trumble, H. C. 1937. Some factors affecting the germination and growth of herbage plants in South Australia. J. Dept. Agric. S. Austral. 40: 779–786.

    Google Scholar 

  • Townsend, C. E. andW. J. McGinnies. 1972. Mechanical scarification of cicer milkvetch (Astragalus cicer L.) seed. Crop Sci. 12: 392–394.

    Google Scholar 

  • Ueki, C. andI. Suetsugu. 1958. The identification of hard seeds in some leguminous forage crops. I. Genge (Astragalus sinicus L.). Proc. Int. Seed Testing Assoc. 23: 69–72.

    Google Scholar 

  • Vaughan, J. G. 1970. The structure and utilization of oil seeds. Chapman & Hall, London. 279 pp.

    Google Scholar 

  • Verschaffelt, E. 1912. Le traitement chimique des graines a imbibition tardive. Recueil. Trav. Bot. Neerl. 9: 401–435. Cited Barton (1965).

    Google Scholar 

  • Villiers, T. A. 1972. Seed dormancy. pp. 226–227.In: Seed Biology. Vol. 2, ed. T. T. Kozlowski. Academic Press, N. Y.

    Google Scholar 

  • Watson, D. P. 1948. Structure of the testa and its relation to germination in thePapilionaceae tribesTrifoliae andLoteae. Ann. Bot. (London) 12: 385–409.

    Google Scholar 

  • Williams, W. A. andJ. R. Elliott. 1960. Ecological significance of seed coat impermeability to moisture in crimson, subterranean and rose clovers in a Mediterranean-type climate. Ecology 41: 733–742.

    Google Scholar 

  • Win Pe, M. J. Hill, andM. E. Johnston. 1975. Effect of seed storage and seed treatment on the germination ofCentrosema pubescens (centro) seeds. New Zealand J. Exp. Agric. 3: 81–89.

    Google Scholar 

  • Winter, D. M. 1960. The development of the seed ofAbutilon theophrasti. II. Seed coat. Amer. J. Bot. 47: 157–162.

    Google Scholar 

  • Woodforde, A. H. 1935. Dormancy in subterranean clover seed. Tasmanian J. Agric. 6: 126–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oregon Agricultural Experiment Station Technical Paper No. 4754.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolston, M.P. Water impermeable seed dormancy. Bot. Rev 44, 365–396 (1978). https://doi.org/10.1007/BF02957854

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02957854

Keywords

Navigation