Skip to main content
Log in

The next frontier in the molecular biology of the opioid system

The opioid receptors

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The analgesic and euphoric properties of some plant alkaloids such as morphine have been known and exploited for centuries. In contrast, only during the last twenty years have we begun to unravel the molecular basis by which opiates exert their effects, mechanisms important to our general understanding of the nervous system. The analgesic response to opiates is the result of a cascade of biochemical events that are triggered by the interaction of the opiate with specific macromolecular components found on the membranes of nervous system tissues, the opioid receptors. The endogenous ligands of these receptors are small peptides, the opioid peptides. Although much has been learned about the structures and the mode of synthesis of the opioid peptides, little is understood about the structure of their receptors. The application of molecular genetic techniques was of great importance to the studies of the opioid peptides. It is now expected that this same technology will unravel the physical mysteries of the opioid receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amano T., Richelson E., and Nirenberg M. (1972) Neurotransmitter synthesis by neuroblastoma clones.Proc. Natl. Acad. Sci. USA 69, 258–263.

    Article  PubMed  CAS  Google Scholar 

  • Attali B., Gouarderes C., Mazaguil H., Audigier Y., and Cros J. (1982) Evidence of multiple “kappa” binding sites by use of opioid peptides in the guinea pig lumbro-sacral spinal cord.Neuropeptides 3, 53–64.

    Article  PubMed  CAS  Google Scholar 

  • Atweh S. F. and Kuhar M. J. (1983) Distribution of physiological significance of opioid receptors in the brain.Br. Med. Bull. 39, 47–52.

    PubMed  CAS  Google Scholar 

  • Bidlack J. M., Abood L. G., Osei-Guinah P., and Archer S. (1981) Purification of the opiate rceptor from rat brain.Proc. Natl. Acad. Sci. USA 78, 636–639.

    Article  PubMed  CAS  Google Scholar 

  • Blume A. J. (1978) Opiate binding to membrane preparations of neuroblastoma X glioma hybrid cells NG108-15: effects of ions and nucleotides.Life Sci. 22, 1843–1852.

    Article  PubMed  CAS  Google Scholar 

  • Bonner T. I., Buckle N. J., Young A. C., and Brann M. R. (1987) Identification of a family of muscarinic acetylcholine receptor genes.Science 237, 527–532.

    Article  PubMed  CAS  Google Scholar 

  • Bowen W. D., Gentleman S., Herkenham M., and Pert C. B. (1981) Interconverting mu and delta forms of the opiate receptor in rat stiatal patches.Proc. Natl. Acad. Sci. USA 78, 4818–4822.

    Article  PubMed  CAS  Google Scholar 

  • Chang K.-J., Cooper B. R., Hazum E., and Cuatrecasas P. (1979) Multiple opiate receptors: Different regional distribution in the brain and differential binding of opiates and opioid peptides.Mol. Pharmacol. 16, 91–104.

    PubMed  CAS  Google Scholar 

  • Chang K.-J., Hazum E., and Cuatrecasas P. (1981) Novel opiate binding sites selective for benzomorphan drugs.Proc. Natl. Acad. Sci. USA 78, 4141–4145.

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y. C. and Prusoff W. H. (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction.Biochem. Pharmacol. 22, 3099–3108.

    Article  PubMed  CAS  Google Scholar 

  • Cho T. M., Hasegawa J. I., Ge B. L., and Loh H. H. (1986) Purification to apparent homogeneity of a mu-type opioid receptor from rat brain.Proc. Natl. Acad. Sci. USA 83, 4138–4142.

    Article  PubMed  CAS  Google Scholar 

  • Civelli O., Douglass J., Goldstein A., and Herbert E. (1985) Sequence and expression of the rat prodynorphin gene.Proc. Natl. Acad. Sci. USA 82, 4291–4295.

    Article  PubMed  CAS  Google Scholar 

  • Comb M., Seeburg P. H., Adelman J., Eiden L., and Herbert E. (1982) Primary structure of the human Met- and Leu-enkephalin precursor and its mRNA.Nature 295, 663–666.

    Article  PubMed  CAS  Google Scholar 

  • Dixon R. A., Koblika B. K., Strader D. J., Benovic J. L., Dohlman H. G., Frielle T., Bolanowski M. A., Bennett C. D., Rands E., Diehl R. E., Mumford R. A., Slater E. E., Sigal I. S., Caron M. G., Lefkovitz R. J., and Strader C. D. (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin.Nature 321, 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Dole V. P., Cuatrecasas P., and Goldstein A. (1975) Criteria for receptors inOpiate receptor mechanisms, Snyder S. H., and Matthysse E., eds., MIT Press, Cambride, MA, pp. 24–26.

    Google Scholar 

  • Frederickson R. C. A., Smithwick E. L., and Shuman R. (1981) Metkephamid, a systemically active analog of methionine enkephalin with potent opioid delta-receptor activity.Science 221, 603–605.

    Article  Google Scholar 

  • Gilbert P. E. and Martin W. R. (1976) The effects of morphine- and nalorphine-like drugs in the nondependent, morphine-dependent and cyclazocine-dependent chronic spinal dog.J. Pharmacol. Exp. Ther. 198, 66–82.

    PubMed  CAS  Google Scholar 

  • Gioannini T., Howard A. D., Hiller J. M., and Simon E. J. (1985) Purification of an active opioid-binding protein from bovine striatum.J. Biol. Chem. 260, 15117–15121.

    PubMed  CAS  Google Scholar 

  • Goldstein A., Tachibana S., Lowney L. I., Hunkapiller M., and Hood L. (1979) Dynorphin (1–13), an extraordinarily potent opioid peptide.Proc. Natl. Acad. Sci. USA 76, 6666–6670.

    Article  PubMed  CAS  Google Scholar 

  • Grenningloh G., Rienitz A., Schmitt B., Methfessel C., Zensen M., Beyreuther K., Gundelfinge E. D., and Betz H. (1987) The strychnine-binding subunit of the glycine receptor shows homology with nicotine acetylcholine receptors.Nature 328, 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Grevel J., Yu V., and Sadee W. (1985) Characterization of a labile naloxone binding site (lambda site) in rat brain.J. Neurochem. 44, 1647–1656.

    Article  PubMed  CAS  Google Scholar 

  • Gross R. A. and MacDonald R. L. (1987) Dynorphin A selectively reduces a large transient (N-type) calcium current of mouse dorsal root ganglion neurons in cell culture.Proc. Natl. Acad. Sci. USA 84, 5469–5473.

    Article  PubMed  CAS  Google Scholar 

  • Grundersen C. B., Miledi R., and Parker I. (1984) Messenger RNA from human brain induces drug- and voltage-operated channels inXenopus oocytes.Nature 308, 421–424.

    Article  Google Scholar 

  • Gubler U., Seeburg P. H., Gage L. P., and Udenfriend S. (1982) Molecular cloning establishes proenkephalin as precursor of enkephalin-containing peptides.Nature 295, 206–209.

    Article  PubMed  CAS  Google Scholar 

  • Hall Z. A. (1987) Three of a kind: the beta-adrenergic receptor, the muscarinic acetylcholine receptor, and rhodopsin.Trends in Neuro Sci. 10, 99–100.

    Article  CAS  Google Scholar 

  • Hedrick S. M., Cohen D. I., Nielsen E. A., and Davis M. M. (1984) Isolation of cDNA clones encoding T cell-specific membrane-associated proteins.Nature 308, 149–153.

    Article  PubMed  CAS  Google Scholar 

  • Herbert E., Birnberg N., Lissitsky J. C., Civelli O., and Uhler M. (1981) Proopiomelanocortin: A model for the regulation of expression of neuropeptides in pituitary and brain.Neurosci. Newslett. 1, 16–27.

    Google Scholar 

  • Hill A. V. (1910) A new mathematical treatment of changes of ionic concentration in muscle and nerve under the action of electric currents, with a theory as to their mode of excitation.J. Physiol. (London) 40, iv-viii.

    Google Scholar 

  • Hiller J. M., Pearson J., and Simon E. J. (1973) Distribution of stereo-specific binding of the potent narcotic analgesic etorphine in the human brain: Predominance in the limbic system.Res. Commun. Chem. Pathol. Pharmacol. 6, 1052–1062.

    PubMed  CAS  Google Scholar 

  • Holaday J. W. (1985) Endogenous opioids and their receptors,Current Concepts, The Upjohn Company, Kalamazoo, MI, pp. 1–64.

    Google Scholar 

  • Howard A. D., de La Baume S., Gioannini T. L., Hiller J. M., and Simon E. J. (1985) Covalent labeling of opioid receptors with radioiodinated human beta-endorphin.J. Biol. Chem. 260, 10833–10839.

    PubMed  CAS  Google Scholar 

  • Hughes J. and Kosterlitz H. W. (1983) Introduction to the opioid peptide systems.Brit. Med. Bull. 39, 1–3ff.

    PubMed  CAS  Google Scholar 

  • Hughes J., Smith T. W., Kosterlitz H. W., Fothergill L. A., Morgan B. A., and Morris H. R. (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity.Nature (London) 258, 577–579.

    Article  CAS  Google Scholar 

  • Kakidani H., Furutani Y., Takahashi H., Noda M., Morimoto Y., Hirose T., Asai M., Inayama S., Nakanishi S., and Numa S. (1982) Cloning and sequence analysis of cDNA for porcine beta-neoendorphin/dynorphin precursors.Nature 298, 245–249.

    Article  PubMed  CAS  Google Scholar 

  • Klee W. A. and Nirenberg M. (1974) A neuroblastoma X glioma hybrid cell line with morphine receptors.Proc. Natl. Acad. Sci. USA 71, 3474–3477.

    Article  PubMed  CAS  Google Scholar 

  • Klee W. A., Sharman S. K., and Nirenberg M. (1975) Opiate receptors as regulators of adenylate cyclase.Life Sci. 16, 1869–1874.

    Article  PubMed  CAS  Google Scholar 

  • Koski G. and Klee W. A. (1981) Opiates inhibit adenylate cyclase by stimulating GTP hydrolysis.Proc. Natl. Acad. Sci. USA 78, 4185–4186.

    Article  PubMed  CAS  Google Scholar 

  • Kosterlitz H. W. (1985) Opioid peptides and their receptors.Proc. R. Soc. Lond. B 225, 27–40.

    Article  PubMed  CAS  Google Scholar 

  • Kosterlitz H. W. and Waterfield A. A. (1975) In vitro models in the study of structure-activity relation-ships of narcotic analysis.Ann. Rev. Pharmacol. Toxicol. 15, 29–47.

    CAS  Google Scholar 

  • Kubo T., Fukuda K., Mikami A., Maeda A., Takahashi H., Mishina M., Haga T., Haga K., Ichiyama A., Kangawa K., Kojima M., Matsuo H., Hirose T., and Numa S. (1986a) Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor.Nature 323, 411–416.

    Article  PubMed  CAS  Google Scholar 

  • Kubo T., Maeda A., Sugimoto K., Akiba I., Mikami A., Takahashi H., Haga T., Haga K., Ichiyama A., Kangawa K., Matsuo H., Hirose T., and Numa S. (1986b) Primary structure of porcine cardiac muscarinic acetylcholine receptor deduced from the cDNA sequence.FEBS Lett 209, 367–372.

    Article  PubMed  CAS  Google Scholar 

  • Kuhar M. J., Pert C. B., and Snyder S. H. (1973) Regional distribution of opiate receptor binding in monkey and human brain.Nature 245, 447–451.

    Article  PubMed  CAS  Google Scholar 

  • Loh H. H., Tseng L. F., Wei E., and Li C. H. (1976) Beta-endorphin is a potent analgesic agent.Proc. Natl. Acad. Sci. USA 73, 2895–2898.

    Article  PubMed  CAS  Google Scholar 

  • Lord J. A. H., Waterfield A. A., Hughes J., and Kosterlitz H. W. (1971) Endogenous opioid peptides: Multiple agonists and receptors.Nature 267, 495–499.

    Article  Google Scholar 

  • Lubbert H., Hoffman B. J., Snutch T. P., van Dyke T., Levine A. J., Hartig P. R., Lester H. A., and Davidson N. (1987) cDNA cloning of a serotonin 5-HTAC receptor by electrophysiological assays of mRNA-injectedXenopus oocytes.Proc. Natl. Acad. Sci. USA,84, 4332–4336.

    Article  PubMed  CAS  Google Scholar 

  • Malfroy B., Swerts J. P., and Guyan A. (1978) High affinity enkephalin-degrading peptidase in brain is increased after morphine.Nature 276, 523–526.

    Article  PubMed  CAS  Google Scholar 

  • Maneckjee R., Zukin R. S., Archer S., Michael J., and Osei-Gyimah P. (1985) Purification and characterization of the mu opiate receptor from rat brain using affinity chromatography.Proc. Natl. Acad. Sci. USA 82, 594–598.

    Article  PubMed  CAS  Google Scholar 

  • Mansour A., Khachaturian H., Lewis M. E., Akil H., and Watson S. J. (1987) Autoradiographic differentiation of mu, delta and kappa opioid receptors in the rat forebrain and midbrain.J. of Neurosc. 7, 2445–2464.

    CAS  Google Scholar 

  • Martin W. R., Eades C. G., Thompson J. A., Huppler R. E., and Gilbert P. E. (1976) The effects of morphine-and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog.J. Pharmacol. Exp. Ther. 197, 517–532.

    PubMed  CAS  Google Scholar 

  • McKnight A. T., Corbett A. D., and Kosterlitz H. W. (1983) Increase in potencies of opioid peptides after peptidase inhibition.Eur. J. Pharmacol. 86, 393–402.

    Article  PubMed  CAS  Google Scholar 

  • Morley J. E., Levine A. S., Yim G. K., and Lowy M. T. (1983) Opioid modulation of appetite.Neurosci. Biobehav. Rev. 7, 281–305.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S., Inoue A., Kita T., Nakamura M., Chang A. C. Y., Cohen S. N., and Numa S. (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor.Nature 278, 423–427.

    Article  PubMed  CAS  Google Scholar 

  • Nathans J. and Hogness D. S. (1983) Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin.Cell 34, 807–814.

    Article  PubMed  CAS  Google Scholar 

  • Newman E. L. and Barnard E. A. (1984) Identification of an opioid receptor subunit carrying the mu binding site.Biochemistry 23, 5385–5389.

    Article  PubMed  CAS  Google Scholar 

  • Ninkovic M., Hunt S. P., Emson P. C., and Iversen L. L. (1981) The distribution of multiple opiate receptors in bovine brain.Brain Res. 214, 163–167.

    Article  PubMed  CAS  Google Scholar 

  • Noda M., Furutani Y., Takahashi H., Toyosato M., Hirose T., Inayama S., Nakanishi S., and Numa S. (1982) Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin.Nature 295, 202–206.

    Article  PubMed  CAS  Google Scholar 

  • Noda M., Takahashi H., Tanabe T., Toyosato M., Furutani Y., Hirose T., Asai M., Inayama S., Miyata T., and Numa S. (1982) Primary structure of alpha-subunit precursor ofTorpedo californica acetylcholine receptor deduced from cDNA sequence.Nature 299, 793–797.

    Article  PubMed  CAS  Google Scholar 

  • Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Hirose T., Asai M., Takashima H., Inayawa S., Miyata T., and Numa S. (1983) Primary structures of beta- and delta-subunit precursors ofTorpedo californica acetylcholine receptor deduced from cDNA sequences.Nature 301, 251–255.

    Article  PubMed  CAS  Google Scholar 

  • North R. A. (1979) Minireview: Opiates, opioid peptides and single neurons.Life Sci. 24, 1527–1546.

    Article  PubMed  CAS  Google Scholar 

  • North R. A. and Williams J. T. (1983) Opiate activation of potassium conductance inhibits calcium action potentials in rat locus coeruleus neurons.Br. J. Pharmacol. 80, 225–228.

    PubMed  CAS  Google Scholar 

  • North R. A., Williams J. T., Surprenant A., and Christie M. J. (1987) Mu and delta receptors belong to a family of receptors that are coupled to potassium channels.Proc. Natl. Acad. Sci. USA 84, 5487–5491.

    Article  PubMed  CAS  Google Scholar 

  • Okayama M. and Berg P. (1982) High-efficiency cloning of full-length cDNA.Mol. Cell. Biol. 2, 161–170.

    PubMed  CAS  Google Scholar 

  • Pasternak G. W., Gintzler A. R., Houghton R. A., Ling G. S. F., Goodman R. R., Spiegel K., Nishmura S., Johnson N., and Recht L. D. (1983) Biochemical and pharmacological evidence for opioid receptor multiplicity in the central nervous system.Life Sci. (Suppl. 1)33, 167–173.

    Article  PubMed  CAS  Google Scholar 

  • Paterson S. J., Robson L. E., and Kosterlitz H. W. (1984) Opioid receptors in the peptides, vol. 6, Udenfriend S. and Meinhofer J., eds., Academic London, pp. 147–187.

    Google Scholar 

  • Peralta E. G., Winslow J. W., Peterson G. L., Smith D. H., Ashkenazi A., Ramachandran J., Schimerlik M. I., and Capon D. J. (1987) Primary structure and biochemical properties of an M2 muscarnic receptor.Science 236, 600–605.

    Article  PubMed  CAS  Google Scholar 

  • Pert C. B. and Snyder S. H. (1973) Opiate receptor: Demonstration in nervous tissue.Science 179, 1011–1014.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer A., Pasi A., Mehraein P., and Herz A. (1982) Opiate receptor binding sites in human brain.Brain REs. 248, 87–96.

    Article  PubMed  CAS  Google Scholar 

  • Portoghese P. S. (1965) A new concept on the mode of interaction of narcotic analgesics with receptors.J. Med. Chem. 8, 609–619.

    Article  PubMed  CAS  Google Scholar 

  • Robson L. E. and Kosterlitz H. W. (1979) Specific protection of the binding site of D-Ala2-D-Leu2-enkephalin (delta receptors) and dihydromorphine (mu receptors).Proc. R. Soc. Lond. (Biol.) 205, 425–432.

    CAS  Google Scholar 

  • Sasahi K. and Sato M. (1987) A single GTP-binding protein regulates K+-channels coupled with dopamine, histamine and acetylcholine receptors.Nature 328, 221–227.

    Article  Google Scholar 

  • Scatchard G. (1949) The attracions of proteins for small molecules and ions.Ann. NY Acad. Sci. 51, 660–674.

    Article  CAS  Google Scholar 

  • Schofield P. R., Darlison M. G., Fujita N., Burt D. R., Stephenson F. A., Rodriguez H., Rhee L. M., Ramachandran J., Reale V., Glencourse T. A., Seeburg P. H., and Barnard E. A. (1987) Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor superfamily.Nature 328, 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Schulz R., Wuster M., and Herz A. (1981) Pharmacological characterization of the Epsilon-opiate receptor.J. Pharmacol. Exp. Ther. 216, 604–606.

    PubMed  CAS  Google Scholar 

  • Schwyzer R., Karlaganis G., and Lang U. (1980) Hormone-receptor interactions: A study of the molecular mechanism of receptor stimulation in isolated fat cells by the partial agonist corticotropin-(5-24)-isosapeptide.Frontiers of Bioorganic Chemistry and Molecular Biology, Ananchenko S. N., ed., Pergamon, Oxford and NY, pp. 277–283.

    Google Scholar 

  • Simon E. J., Bonnet K. A., Crain S. M., Groth J., Hiller J. M., and Smith J. R. (1980) Recent studies on interaction between opioid peptides and their receptors.Neural Peptides and Neuronal Communication, Costa E., and Trabucchi M., eds., pp. 335–346.

  • Simon E. J. and Groth J. (1975) Kinetic of opiate receptors, inactivation by sulfhydryl reagents: Evidence for conformational change in presence of sodium ions.Proc. Natl. Acad. Sci. USA 72, 2404–2407.

    Article  PubMed  CAS  Google Scholar 

  • Simon E. J., Hiller J. M., and Edelman I. (1973) Stereospecific binding of the potent narcotic analgesic3H-etorphine to rat brain homogenate.Proc. Natl. Acad. Sci. USA 70, 1947–1949.

    Article  PubMed  CAS  Google Scholar 

  • Simonds W. F., Burke T. R., Rice K. C., Jacobson A. E., and Klee W. A. (1985) Purification of the opiate receptor of NG108-15 neuroblatoma-glioma hybrid cells.Proc. Natl. Acad. Sci. USA 82, 4974–4978.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. R. and Simon E. J. (1980) Selective protection of stereospecific enkephalin and opiate binding against inactivation by N-ethylmaleimide evidence for two classes of receptors.Proc. Natl. Acad. Sci. USA 77, 281–284.

    Article  PubMed  CAS  Google Scholar 

  • Southern P. J. and Berg P. (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter.J. Mol. Appl. Genet. 1, 327–341.

    PubMed  CAS  Google Scholar 

  • Stevens C. F. (1987) Channel families in the brain.Nature 328, 198–199.

    Article  PubMed  CAS  Google Scholar 

  • Terenius L. (1973) Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex.Acta Pharmacol. Toxicol. Copen. 32, 317–320.

    CAS  Google Scholar 

  • Teschemacher H. and Schweigerer L. (1985) Opioid Peptides: do they have immunological significance.Trends in Pharmacol. Sci. 12, 368–370.

    Article  Google Scholar 

  • Weber E., Esch F. S., Bohlen P., Paterson S., Corbett A. D., McKnight A. T., Kosterlitz H. W., Barchas J. D., and Evans C. J. (1983) Metorphamide: Isolation, structure, and biological activity of an amidated opioid octapeptide from bovine brain.Proc. Natl. Acad. Sci. USA 80, 7362–7366.

    Article  PubMed  CAS  Google Scholar 

  • Wei E. and Loh H. H. (1976) Physical dependence on opiate-like peptides.Science 193, 1262–1263.

    Article  PubMed  CAS  Google Scholar 

  • Werz M. A. and MacDonald R. L. (1982) Heterogeneous sensitivity of cultured dorsl root ganglian neurons to opioid peptides selective for mu- and delta-opiate receptors.Nature (London) 299, 730–733.

    Article  CAS  Google Scholar 

  • Werz M. A. and MacDonald R. L. (1983) Opioid peptides with differential affinity for mu- and delta-receptors decrease sensory neuron calcium-dependent action optentials.J. Pharmacol. Exp. Ther. 227, 394–402.

    PubMed  CAS  Google Scholar 

  • West R. E. and Miller R. J. (1983) Opiates, second messengers and cell response.Br. Med. Bull. 39, 53–58.

    PubMed  CAS  Google Scholar 

  • Williams J. T., Egan T. M., and North R. A. (1982) Enkephalin opens potassium channels on mammalian central neurons.Nature 299, 74–77.

    Article  PubMed  CAS  Google Scholar 

  • Yatani A., Codina J., Brown A. M., and Birnbaumer L. (1987) Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein Gk.Science 235, 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Young D., Waitches G., Birchmeier C., Fasno O., and Wigler M. (1986) Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains.Cell 45, 711–719.

    Article  PubMed  CAS  Google Scholar 

  • Zukin R. S. and Maneckjee R. (1986) Solubilization and characterization of opiate receptors.Meth. in Enzymol 124, 172–190.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

In memory ofEdward Herbert

Rights and permissions

Reprints and permissions

About this article

Cite this article

Civelli, O., Machida, C., Bunzow, J. et al. The next frontier in the molecular biology of the opioid system. Mol Neurobiol 1, 373–391 (1987). https://doi.org/10.1007/BF02935742

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02935742

Index Entries

Navigation