Skip to main content
Log in

Production of catalases byComamonas spp. and resistance to oxidative stress

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Bacterial isolatesComamonas terrigena N3H (from soil contaminated with crude oil) andC. testosteroni (isolated from the sludge of a wastewater treatment plant), exhibit much higher total catalase activity than the same species from laboratory collection cultures. Electrophoretic resolution of catalases revealed only one corresponding band in cell-free extracts of bothC. testosteroni cultures. Isolates ofC. terrigena N3H exhibited catalase-1 and catalase-2 activity, whereas in the collection cultureC. terrigena ATCC 8461 only catalase-1 was detected. The environmental isolates exhibited much higher resistance to exogenous H2O2 (20, 40 mmol/L) than collection cultures, mainly in the middle and late exponential growth phases. The stepwise H2O2-adapted culture ofC. terrigena N3H, which was more resistant to oxidative stress than the original isolate, exhibited an increase of catalase and peroxidase activity represented by catalase-1. Pretreatment of cells with 0.5 mmol/L H2O2 followed by an application of the oxidative agent in toxic concentrations (up to 40 mmol/L) increased the rate of cell survival in the original isolate, but not in the H2O2-adapted variant. The protection of bacteria caused by such pretreatment corresponded with stimulation of catalase activity in pretreated culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EEP:

early exponential phase

LSP:

late stationary phase

LEP:

late exponential phase

MEP:

middle exponential phase

Referencés

  • Anderson A.J., Miller C.D.: Catalase activity and the survival ofPseudomonas putida, a root colonizer, upon treatment with peracetic acid.Can.J.Microbiol. 47, 222–228 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Bae H.S., Lee J.M., Kim Y.B., Lee S.T.: Biodegradation of the mixture of 4-chlorophenol and phenol byComamonas testosteroni CPW301.Biodegradation 7, 463–469 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Barkay T., Pritchard H.: Adaptation of aquatic microbial communities to pollutant stress.Microbiol.Sci. 5, 165–169 (1988).

    PubMed  CAS  Google Scholar 

  • Bishai W.R., Howard N.S., Winkelstein J.A., Smith H.O.: Characterization and virulence analysis of catalase mutants ofHaemophilus influenzae.Infect.Immun. 62, 4855–4860 (1994).

    PubMed  CAS  Google Scholar 

  • Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal.Biochem. 72, 248–250 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Dowds B.C.: The oxidative stress response inBacillus subtilis.FEMS Microbiol.Lett. 124, 255–263 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Dowds B.C.A., Murphy P., McConnell D.J., Devine K.M.: Relationship among oxidative stress, growth cycle, and sporulation inBacillus subtilis.J.Bacteriol. 169, 5771–5775 (1987).

    PubMed  CAS  Google Scholar 

  • Ferianc P., Polek B., Godočiková J., Tóth D.: Metabolic activity of cadmium-stressed and/or starvedVibrio sp.Folia Microbiol. 40, 443–446 (1995).

    Article  CAS  Google Scholar 

  • Gille G., Sigler K.: Oxidative stress and living cells.Folia Microbiol. 40, 131–152 (1995).

    Article  CAS  Google Scholar 

  • Godočiková J., Polek B., Whie G.F., Ferianc P., Tóth D.: Dioctyl sulphosuccinate utilization and mineralization by bacteriaComamonas terrigena N3H.Biologia 52, 741–745 (1997).

    Google Scholar 

  • Godočíková J., Ferianc P., Polek B.: Lag period of14CO2 evolution from dioctyl sulpho[2,3-14C]succinate in relation to adaptation of bacterium,Comamonas terrigena, to dialkyl esters of sulphosuccinate.Biotechnol.Lett. 26, 1497–1500 (2004).

    Article  PubMed  Google Scholar 

  • Halliwell B., Gutteridge M.C.:Free Radicals in Biology and Medicine, pp. 105–350. Oxford University Press, Oxford 1999.

    Google Scholar 

  • Jenkins D.E., Schultz J.E., Matin A.: Starvation-induced cross-protection against heat and H2O2 challenge inEscherichia coli.J.Bacteriol. 170, 3910–3914 (1988).

    PubMed  CAS  Google Scholar 

  • Kappus H.: Oxidative stress in chemical toxicity.Arch.Toxicol. 60, 144–149 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Loprasert S., Vattanaviboon P., Praituan W., Chamnongpol S., Mongkolsuk S.: Regulation of the oxidative stress protective enzymes, catalase and superoxide dismutase inXanthomonas — a review.Gene 179, 33–37 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Muley M.R., Switala J., Borys A., Loewen P.C.: Regulation of transcription ofkatF inEscherichia coli.J.Bacteriol. 172, 6713–6720 (1990).

    Google Scholar 

  • Murphy P., Dowds B.C.A., McConnel D.J., Devine K.M.: Oxidative stress and growth temperature inBacillus subtilis.J.Bacteriol. 169, 5766–5770 (1987).

    PubMed  CAS  Google Scholar 

  • Odenbreit S., Wieland B., Haas R.: Cloning and genetic characterization ofHelicobacter pylori catalase and construction of a catalase-deficient mutant strain.J.Bacteriol. 178, 6960–6967 (1996).

    PubMed  CAS  Google Scholar 

  • Park Y.B., Han Y.H.: Increased activities of SOD and catalases on aerobic growth inArcobacter nitrofigilis.J.Microbiol. 35, 239–240 (1997).

    CAS  Google Scholar 

  • Peters M., Heinaru A., Nurk A.: Plasmid-encoded catalase KatA, the main catalase ofPseudomonas fluorescens strain Cb36.FEMS Microbiol.Lett. 200, 235–240 (2000).

    Article  Google Scholar 

  • Prokšová M., Augustín J., Vrbanová A.: Enrichment, isolation and characterization of dialkyl sulfosuccinate degrading bacteriaComamonas terrigena N3H andComamonas terrigena N1C.Folia Microbiol. 42, 635–639 (1997).

    Article  Google Scholar 

  • Roggenkamp R., Sahm H., Wagner F.: Microbial assimilation of methanol induction and function of catalase inCandida boidinii.FEBS Lett. 41, 283–286 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Sha Z., Stabel T.J., Mayfield J.E.:Brucella abortus catalase is a periplasmic protein lacking a standard signal sequence.J.Bacteriol. 176, 7375–7377 (1994).

    PubMed  CAS  Google Scholar 

  • Vattanaviboon P., Mongkolsuk S.: Unusual adaptive, cross protection responses and growth phase resistance against peroxide killing in a bacterial shrimp pathogen,Vibrio harveyi.FEMS Microbiol.Lett. 200, 111–116 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Vattanaviboon P., Whangsuk W., Mongkolsuk S.: A suppressor of the menadione-hypersensitive phenotype of aXanthomonas campestris pv. phascoli oxyR mutant reveals a novel mechanism of toxicity and the protective role of alkyl hydroperoxide reductase.J.Bacteriol. 185, 1743–1748 (2003).

    Article  CAS  Google Scholar 

  • Winquist L., Rannung U., Rannung A., Ramel C.: Protection from toxic and mutagenic effects of hydrogen peroxide by catalase induction inSalmonella typhimurium.Mutat.Res. 141, 145–147 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Woodbury W.A., Spencer K., Stahlmann M.A.: An improved procedure using ferricyanide for detecting catalase isozymes.Anal. Biochem. 44, 301–305 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Yumoto I., Iwata H., Sawabe T., Veno K., Ichise N., Matsujama H., Okuyama H., Kawasaki K.: Characterization of facultatively psychrophilic bacteriumVibrio rumoiensis sp.nov., that exhibits high catalase activity.Appl.Environ.Microbiol. 65, 67–72 (1999).

    PubMed  CAS  Google Scholar 

  • Yun E.J., Lee Y.N.: Production of two different catalase-peroxidases byDeinococcus radiophilus.FEMS Microbiol.Lett. 184, 155–159 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Zámocký M., Herzog C., Nykyri L.M., Koller F.: Site-directed mutagenesis of the lower parts of yeast catalase A leads to highly increased peroxidatic activity.FEBS Lett. 367, 241–245 (1995).

    Article  PubMed  Google Scholar 

  • Zámocký M., Godočíková J., Koller F., Polek B.: Potential application of catalase-peroxidase fromComamonas terrigena N3H in the biodegradation of phenolic compounds.Antonie van Leeuwenhoek 79, 109–117 (2001).

    Article  PubMed  Google Scholar 

  • Zámocký M., Polek B., Godočíková J., Koller F.: Oxidative stress-induced expression of catalases inComamonas terrigena.Folia Microbiol. 47, 235–240 (2002).

    Article  Google Scholar 

  • Zámocký M., Godočiková J., Gašperík J., Koller F., Polek B.: Expression, purification, and sequence analysis of catalase-1 from the soil bacteriumComamonas terrigena N3H.Protein Expres.Purif. 36, 115–123 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Godočíková.

Additional information

This work was supported by VEGA grant of theSlovak Academy of Sciences no. 2/5069/25.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godočíková, J., Boháčová, V., Zámocký, M. et al. Production of catalases byComamonas spp. and resistance to oxidative stress. Folia Microbiol 50, 113–118 (2005). https://doi.org/10.1007/BF02931458

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931458

Keywords

Navigation