Skip to main content
Log in

Visualization of DNA-containing structures in various species ofChlorophyta, Rhodophyta andCyanophyta using SYBR green I dye

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

We developed an alternative method of staining cell nuclei and chloroplast nucleoids of algal cells using SYBR Green I (the fluorescent dye used commonly for detecting dsDNA in agarose and polyacrylamide gels as an alternative to highly mutagenic ethidium bromide and for DNA staining of viruses and bacteria followed by flow cytometry, digital image analysis or real-time PCR), which enabled routine stainingin vivo. Cells do not need to be fixed or treated chemically or physically before staining, thus the shape, size and position of DNA-containing structures are not affected. The fluorescence signal is sharp and reproducible. Examples of application of the method are shown in color microphotographs for representatives of eukaryotic algae from the taxaChlorophyta, Rhodophyta and the prokaryoticCyanophyta. The method is also useful for studying progress of the cell cycle in algal cells dividing by multiple fission, as shown by observation of changes in nuclear number during the cell cycle of the green algaChlamydomonas reinhardtii andScenedesmus quadricauda. Staining with SYBR Green I can be recommended as a fast, safe and efficient method for the detection of DNA-containing structuresin vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldea C., Alvarez C.P., Folgueira L., Delgado R., Otero J.R.: Rapid detection of herpes simplex virus DNA in genital ulcers by real-time PCR using SYBR Green I dye as the detection signal.J.Clin.Microbiol.40, 1060–1062 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Bišová K., Hendrychová J., Cepák V., Zachleder V.: Cell growth and division processes are differentially sensitive to cadmium inScenedesmus quadricauda.Folia Microbiol.48, 805–816 (2003).

    Article  Google Scholar 

  • Broadaway S.C., Barton S.A., Pyle B.H.: Rapid staining and enumeration of small numbers of total bacteria in water by solid-phase laser cytometry.Appl.Environ.Microbiol.69, 4272–4273 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Cepák V.: Variability of nucleoid morphology of some cyanophytes growing under various growth conditions.Algol.Stud.81, 39–52 (1996).

    Google Scholar 

  • Cepák V., Zobačová M., Zachleder V.: The effect of cadmium ions on the cell cycle of the green flagellateChlamydomonas noctigama.Arch.Hydrobiol.Algol.Stud.106 (Suppl. 144), 117–129 (2002).

    Google Scholar 

  • Cepák V., Přibyl P., Vítová M.: The effect of light of differing spectral qualities on the nucleocytoplasmic and chloroplast cycle of the green chlorococcal algaScenedesmus obliquus. Folia Microbiol.51, in press (2006).

  • Chen B., Rodbard D., Chrambach A.: Polyacrylamide gel electrophoresis with optical scanning, using multiphasic buffer systems.Anal.Biochem.89, 596–608 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Coleman A.W.: Visualization of chloroplast DNA with two fluorochromes.Exp.Cell Res.114, 95–100 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Coleman A.W.: The use of fluorochrome 4′,6-diamidino-2-phenylindole in genetic and developmental studies of chloroplast DNA.J.Cell Biol.82, 299–305 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Coleman A.W., Maguire M.J.: A microspectrophotometric analysis of nuclear and chloroplast DNA inVolvox.Dev.Biol.94, 441–450 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Coleman A.W., Maguire M.J., Coleman J.R.: Mithramycin DNA and 4′,6-diamidino-2-phenylindole DNA staining for fluorescence micro-spectrophotometric measurement of DNA in nuclei plastids and virus particles.J.Histochem.Cytochem.29, 959–968 (1981).

    PubMed  CAS  Google Scholar 

  • Dallman T., Ares M., Howell S.H.: Analysis of transcription during the cell cycle in toluenizedChlamydomonas reinhardtii cells.Mol.Cell.Biol.3, 1537–1539 (1983).

    PubMed  CAS  Google Scholar 

  • Hashimoto H., Murakami S.: Chloroplast replication and loss of chloroplast DNA induced by nalidixic acid inEuglena gracilis.Cell Struct.Funct.7, 111–120 (1982).

    CAS  Google Scholar 

  • Hull H.M., Hoshaw R.W., Wang J.C.: Cytofluorometric determination of nuclear DNA in living and preserved algae.Stain Technol.57, 273–282 (1982).

    PubMed  CAS  Google Scholar 

  • Kuroiwa T.: Mitochondrial nuclei.Internat.Rev.Cytol.75, 1–59 (1982).

    Article  CAS  Google Scholar 

  • Kuroiwa T., Suzuki T.: An improved method for the demonstration of thein situ chloroplast nuclei in higher plants.Cell Struct. Funct.5, 195–197 (1980).

    Article  Google Scholar 

  • Kuroiwa T., Nishibayashi S., Kawano S., Suzuki T.: Visualization of DNA in various phages (T4, χ, T7, ϕ29) by ethidium bromide epifluorescent microscopy.Experimentia37, 969–970 (1981a).

    Article  CAS  Google Scholar 

  • Kuroiwa T., Suzuki T., Ogawa K., Kawano S.: The chloroplast nucleus: distribution, number, size and shape, and a model for the multiplication of the chloroplast genome during chloroplast development.Plant Cell Physiol.22, 381–396 (1981b).

    Google Scholar 

  • Lüttke A., Bonotto S.: Chloroplast DNA ofAcetabularia mediterranea: cell cycle related changes in distribution.Planta153, 536–542 (1981).

    Article  Google Scholar 

  • Meinhardt L.W., Bellato C.M., Tsai S.M.: SYBR Green I used to evaluate the nuclei number of fungal mycelia.BioTechnology31, 42–46 (2001).

    CAS  Google Scholar 

  • Sulek J.: Nuclear division inScenedesmus quadricauda (Turp.)Breb.Arch.Hydrobiol.Algol.Stud.12, 224–258 (1975).

    Google Scholar 

  • Suzuki T., Kawano S., Kuroiwa T.: Structure of three-dimensionally rod-shaped mitochondrial nucleoids isolated from the slime mouldPhysarum polycephalum.J.Cell Sci.58, 241–261 (1982).

    PubMed  CAS  Google Scholar 

  • Suzuki T., Fujikura K., Higashiyama T., Kuniaki Takata K.: DNA staining for fluorescence and laser confocal microscopy.J.Histochem.Cytochem.45, 49–53 (1997).

    PubMed  CAS  Google Scholar 

  • Tschermak-Woess E., Scholler A.: Verteilung und Aufteilung der DNS bei cinigen Cyanophyceen, festgestellt durch ihrc DAPI-Fluorescenz.Plant Syst.Evol.140, 207–223 (1982).

    Article  CAS  Google Scholar 

  • Williamson Q.H., Fennel O.J.: The use of fluorescent DNA-binding agent for detecting and separating yeast mitochondrial DNA.Meth.Cell Biol.12, 335–351 (1975).

    Article  CAS  Google Scholar 

  • Zachleder V., Cepák V.: Visualization of DNA containing structures by fluorochrome DAPI in those algal cells which are not freely permeable to the dye.Arch.Hydrobiol. Algol.Stud.47, 157–168 (1987).

    Google Scholar 

  • Zachleder V., Šetlík I.: Effect of irradiance on the course of RNA synthesis in the cell cycle ofScenedesmus quadricauda.Biol.Plant.24, 341–353 (1982).

    Article  CAS  Google Scholar 

  • Zachleder V., Kawano S., Kuroiwa T.: Uncoupling of chloroplast reproductive events from cell cycle division processes by 5-fluorodeoxyuridine in the algaScenedesmus quadricauda.Protoplasma192, 228–234 (1996).

    Article  CAS  Google Scholar 

  • Zachleder V., Kawano S., Cepák V., Kuroiwa T.: The effect of nalidixic acid on growth and reproductive events in nucleocytosolic and chloroplast compartments in the algaScenedesmus quadricauda.Folia Microbiol.49, 441–451 (2004).

    CAS  Google Scholar 

  • Žižka Z., Hostounský Z., Kalalová S.: RCH-microscopy used in microbiological studies.Folia Microbiol.44, 328–332 (1999).

    Article  Google Scholar 

  • Žižka Z., Hostounský Z., Kálalová S.: Morphological details of microorganisms revealed by RHC-microscopy at high magnification — a ready-to-use adaptation of a light microscope.Folia Microbiol.46, 495–503 (2001).

    Article  Google Scholar 

  • Žižka Z., Hostounský Z., Gabriel J.: ARC-microscopy — a novel microscopic technique used in microbiological studies.Folia Microbiol.48, 829–838 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Zachleder.

Additional information

This work was supported by theGrant Agency of the Czech Republic (grants 204/02/1438 and 204/03/1113), by theGrant Agency of Academy of Sciences of the Czech Republic (grant no. B5020305), and byInstitutional Research Concept (no. AV 0Z 502 0903).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vítová, M., Hendrychová, J., Cepák, V. et al. Visualization of DNA-containing structures in various species ofChlorophyta, Rhodophyta andCyanophyta using SYBR green I dye. Folia Microbiol 50, 333–340 (2005). https://doi.org/10.1007/BF02931414

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931414

Keywords

Navigation