Skip to main content
Log in

A wavelet theory for local fields and related groups

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let G be a locally compact abelian group with compact open subgroup H. The best known example of such a group is G = ℚp, the field of padic rational numbers (as a group under addition), which has compact open subgroup H = ℤp, the ring of padic integers. Classical wavelet theories, which require a non trivial discrete subgroup for translations, do not apply to G, which may not have such a subgroup. A wavelet theory is developed on G using coset representatives of the discrete quotient Ĝ/H to circumvent this limitation. Wavelet bases are constructed by means of an iterative method giving rise to socalled wavelet sets in the dual group Ĝ. Although the Haar and Shannon wavelets are naturally antipodal in the Euclidean setting, it is observed that their analogues for G are equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, S.T., Antoine, J.-P., and Gazeau, J.P-.Coherent States, Wavelets and their Generalizations, Springer-Verlag, New York, (2000).

    MATH  Google Scholar 

  2. Altaiski, M.V. p-adic wavelet decomposition vs Fourier analysis on spheres,Indian J. Pure Appl. Math.,28(2), 197–205, (1997).

    MathSciNet  MATH  Google Scholar 

  3. Antoine, J.-P., Kouagou, Y.B., Lambert, D., and Torrésani, B. An algebraic approach to discrete dilations. Application to discrete wavelet transforms,J. Fourier Anal. Appl.,6(2), 113–141, (2000).

    Article  MathSciNet  MATH  Google Scholar 

  4. Antoine, J.-P. and Vandergheynst, P. Wavelets on the 2-sphere: a group-theoretical approach,Appl. Comput. Harmon. Anal.,7(3), 262–291, (1999).

    Article  MathSciNet  MATH  Google Scholar 

  5. Baggett, L.W., Medina, H.A., and Merrill, K.D. Generalized multi-resolution analyses and a construction procedure for all wavelet sets in Rn,J. Fourier Anal. Appl.,5(6), 563–573, (1999).

    Article  MathSciNet  MATH  Google Scholar 

  6. Baggett, L.W. and Merrill, K.D. Abstract harmonic analysis and wavelets in Rn,The Functional and Harmonic Analysis of Wavelets and Frames, (San Antonio, TX, 1999),Am. Math. Soc., 17–27, Providence, RI, (1999).

  7. Benedetto, J.J.Spectral Synthesis, Academic Press, New York, (1975).

    Google Scholar 

  8. Benedetto, J.J. Frames, sampling, and seizure prediction, inAdvances in Wavelets, Lau, K.-S., Ed., Springer-Verlag, New York, (1998).

    Google Scholar 

  9. Benedetto, J.J. and Benedetto, R.L. Multiresolution analysis over local fields, in preparation, (2004).

  10. Benedetto, J.J. and Leon, M.T. The construction of multiple dyadic minimally supported frequency wavelets on ℝd,Contemp. Math.,247, 43–74, (1999).

    MathSciNet  Google Scholar 

  11. Benedetto, J.J. and Leon, M.T. The construction of single wavelets in d-dimensions,J. Geom. Anal.,11(1), 1–15, (2001).

    Article  MathSciNet  MATH  Google Scholar 

  12. Benedetto, J.J. and Sumetkijakan, S. A fractal set constructed from a class of wavelet sets,Contemp. Math.,313, 19–35, (2002).

    MathSciNet  Google Scholar 

  13. Benedetto, J.J. and Sumetkijakan, S. Tight frames and geometric properties of wavelet sets,Adv. Comp. Math., (2004).

  14. Benedetto, R.L. Examples of wavelets for local fields,Wavelets, Frames, and Operator Theory, (College Park, MD, 2003),Am. Math. Soc., 27–47, Providence, RI, (2004).

  15. Casazza, P.G., Han, D., and Larson, D.R. Frames for Banach spaces,The Functional and Harmonic Analysis of Wavelets and Frames, (San Antonio, TX, 1999),Am. Math. Soc., 149–182, Providence, RI, (1999).

  16. Courter, J. Construction of dilation-d wavelets, AMSContemp. Math.,247, 183–205, (1999).

    MathSciNet  Google Scholar 

  17. Dahlke, S. Multiresolution analysis and wavelets on locally compact abelian groups, inWavelets, Images, and Surface Fitting, (Chamonix-Mont-Blanc, 1993), Peters, A.K., Wellesley, MA, 141–156, (1994).

  18. Dahlke, S. The construction of wavelets on groups and manifolds, inGeneral Algebra and Discrete Mathematics, (Potsdam, 1993), Heldermann, Lemgo, 47–58, (1995).

  19. Dai, X. and Larson, D.R. Wandering vectors for unitary systems and orthogonal wavelets,Mem. Am. Math. Soc.,134(640), viii+68, (1998).

    MathSciNet  Google Scholar 

  20. Dai, X., Larson, D.R., and Speegle, D.M. Wavelet sets in Rn,J. Fourier Anal. Appl,3(4), 451–456, (1997).

    Article  MathSciNet  MATH  Google Scholar 

  21. Dai, X., Larson, D.R., and Speegle, D.M. Wavelet sets in Rn, II,Wavelets, Multiwavelets, and Their Applications, (San Diego, CA, 1997),Am. Math. Soc., Providence, RI, 15–40, (1998).

  22. Daly, J. and Phillips, K. On singular integrals, multipliers, h1 and Fourier series—a local field phenomenon,Math. Ann.,265(2), 181–219, (1983).

    Article  MathSciNet  MATH  Google Scholar 

  23. Daubechies, I.Ten Lectures on Wavelets, CBMS-NSF Series inApplied Math., SIAM, Philadelphia, PA, (1992).

    Google Scholar 

  24. Farkov, Yu.A. Orthogonal wavelets on locally compact abelian groups,Funktsional. Anal. i Prilozhen.,31(4), 86–88, (1997).

    Article  MathSciNet  Google Scholar 

  25. Flornes, K., Grossmann, A., Holschneider, M., and Torrésani, B. Wavelets on discrete fields,Appl. Comput. Harmon. Anal.,1(2), 137–146, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  26. Gouvêa, F.p-adic Numbers, an Introduction, 2nd ed., Springer-Verlag, Berlin, (1997).

    Google Scholar 

  27. Gröchenig, K. and Haas, A. Self-similar lattice tilings,J. Fourier Anal. Appl,1(2), 131–170, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  28. Gröchenig, K. and Madych, W.R. Multiresolution analysis, Haar bases, and self-similar tilings of L2(Rn),IEEE Trans. Inform. Th.,38(2), 556–568, (1992).

    Article  Google Scholar 

  29. Han, D., Larson, D.R., Papadakis, M., and Stavropoulos, T. Multiresolution analyses of abstract Hilbert spaces and wandering subspaces,The Functional and Harmonic Analysis of Wavelets and Frames, (San Antonio, TX, 1999),Am. Math. Soc., Providence, RI, 259–284, (1999).

  30. Hernández, E., Wang, X., and Weiss, G. Smoothing minimally supported frequency wavelets, part II,J. Fourier Anal. Appl,3(1), 23–41, (1997).

    Article  MathSciNet  MATH  Google Scholar 

  31. Hewitt, E. and Ross, K.A.Abstract Harmonic Analysis, Volume I, Springer-Verlag, New York, (1963).

    MATH  Google Scholar 

  32. Hewitt, E. and Ross, K.A.Abstract Harmonic Analysis, Volume II, Springer-Verlag, New York, (1970).

    MATH  Google Scholar 

  33. Holschneider, M. Wavelet analysis over abelian groups,Appl. Comput. Harmon. Anal,2(1), 52–60, (1995).

    Article  MathSciNet  MATH  Google Scholar 

  34. Johnston, C.P. On the pseudodilation representations of Flornes, Grossmann, Holschneider, and Torresani,J. Fourier Anal. Appl,3(4), 377–385, (1997).

    Article  MathSciNet  MATH  Google Scholar 

  35. Koblitz, N.p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd ed., Springer-Verlag, New York, (1984).

    Google Scholar 

  36. Kozyrev, S.V. Wavelet analysis as a p-adic spectral analysis,Izv. Math.,66, 367–376, (2002).

    Article  MathSciNet  MATH  Google Scholar 

  37. Lagarias, J.C. and Wang, Y. Haar type orthonormal wavelet bases in R2,J. Fourier Anal. Appl,2(1), 1–14, (1995).

    Article  MathSciNet  MATH  Google Scholar 

  38. Lagarias, J.C. and Wang, Y. Integral self-affine tiles in Rn, part II lattice tilings,J. Fourier Anal Appl.,3(1), 83–102, (1997).

    Article  MathSciNet  MATH  Google Scholar 

  39. Lang, W.C. Orthogonal wavelets on the Cantor dyadic group,SIAM J. Math. Anal.,27, 305–312, (1996),.

    Article  MathSciNet  MATH  Google Scholar 

  40. Lang, W.C. Fractal multiwavelets related to the Cantor dyadic group,Internat. J. Math. Math. Sci.,21, 307–314, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  41. Lang, W.C. Wavelet analysis on the Cantor dyadic group,Houston J. Math.,24, 533–544 and 757–758, (1998).

    MathSciNet  MATH  Google Scholar 

  42. Lemarié, P.G. Base d’ondelettes sur les groupes de Lie stratifiés,Bull. Soc. Math. France,117(2), 211–232, (1989).

    MathSciNet  MATH  Google Scholar 

  43. Lukashenko, T.P. Wavelets on topological groups,Izv. Ross. Akad. Nauk. Ser. Mat.,58(3), 88–102, (1994).

    Google Scholar 

  44. Madych, W.R. Some elementary properties of multiresolution analyses of L2(Rn), inWavelets: a Tutorial in Theory and Applications, Chui, C.K., Ed., Academic Press, San Diego, CA, 256–294, (1992).

    Google Scholar 

  45. Mallat, S.A Wavelet Tour of Signal Processing, Academic Press, Boston, (1998).

    MATH  Google Scholar 

  46. Meyer, Y.Ondelettes et Opérateurs, Hermann, Paris, (1990).

    Google Scholar 

  47. Papadakis, M. Generalized frame multiresolution analysis of abstract Hilbert spaces,Sampling, Wavelets, and Tomography, Birkhäuser, Boston, MA, (2003).

    Google Scholar 

  48. Papadakis, M. and Stavropoulos, T. On the multiresolution analyses of abstract Hilbert spaces,Bull. Greek Math. Soc.,40, 79–92, (1998).

    MathSciNet  MATH  Google Scholar 

  49. Pontryagin, L.L.Topological Groups, 2nd ed., Gordon and Breach, Science Publishers, New York, (1966), transi. from the Russian by Arlen Brown.

    Google Scholar 

  50. Ramakrishnan, D. and Valenza, R.J.Fourier Analysis on Number Fields, Springer-Verlag, New York, (1999).

    MATH  Google Scholar 

  51. Reiter, H.Classical Harmonic Analysis and Locally Compact Groups, Oxford University Press, (1968).

  52. Robert, A.M.A Course in p-adic Analysis, Springer-Verlag, New York, (2000).

    MATH  Google Scholar 

  53. Rudin, W.Fourier Analysis on Groups, John Wiley & Sons, New York, (1962).

    MATH  Google Scholar 

  54. Schulz, E. and Taylor, K.F. Extensions of the Heisenberg group and wavelet analysis in the plane,Spline Functions and the Theory of Wavelets, (Montreal, PQ, 1996),Am. Math. Soc., Providence, RI, 217–225, (1999).

  55. Serre, J.-P.Local Fields, Springer-Verlag, New York, (1979), transi. by Marvin J. Greenberg.

    MATH  Google Scholar 

  56. Soardi, P.M. and Weiland, D. Single wavelets in n-dimensions,J. Fourier Anal. Appl.,4(3), 299–315, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  57. Taibleson, M.H.Fourier Analysis on Local Fields, Princeton University Press, Princeton, NJ, (1975).

    MATH  Google Scholar 

  58. Triméche, K. Continuous wavelet transform on semisimple Lie groups and inversion of the Abel transform and its dual,Collect. Math.,47(3), 231–268, (1996).

    MathSciNet  Google Scholar 

  59. Zakharov, V.G. Nonseparable multidimensional Littlewood-Paley like wavelet bases, preprint, (1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Benedetto.

Additional information

Communicated by Guido Weiss

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benedetto, J.J., Benedetto, R.L. A wavelet theory for local fields and related groups. J Geom Anal 14, 423–456 (2004). https://doi.org/10.1007/BF02922099

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922099

Math Subject Classifications

Key Words and Phrases

Navigation