Skip to main content
Log in

Deformability of red blood cells: A determinant of blood viscosity

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The suspension of hardened red blood cells (RBCs) differs from the suspension of normal RBCs with respect to their rheological behavior. The present study investigated the effect of deformability of RBCs on blood viscosity. RBC deformability and blood viscosity were measured with a recently developed slit-flow laser-diffractometer and the pressure-scanning capillary viscometer, respectively. At the same level of cell concentration, the viscosity of the hardened RBC suspension is higher than that of the normal RBCs suspension. An increase in cell percentage for hardened RBCs shows the significant increase in the level of blood viscosity compared to the normal RBCs. In addition, it was found that RBC deformability played an important role in reducing viscosity at low shear rates as well as high shear rates. These results present the evidence for the effect of RBC deformability on blood viscosity using newly developed methods, which can be used in early diagnosis of the cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EI:

elongation index

h:

slit gap, [m]

L:

slit length, [m]

n:

number of samples

P:

pressure, [kPa]

δP:

pressure difference(=Pa- P)

Q:

volume flow rate, [m3/s]

V:

volume, [m3]

t:

time, [s]

w:

slit width, [m]

X:

length of major axis of ellipse

Y:

length of minor axis of ellipse

ρ:

density, [kg/m3]

η:

non-Newtonian viscosity, [Pa*s]

γ:

shear rate, [s-1]

τ:

shear stress, [Pa]

A:

atmosphere

avg:

averaged

w:

wall

References

  • Baskurt, O. K. and Meiselman, H. J., 2003, “Blood Rheology and Hemodynamics,”Seminars in Thrombosis and Hemostasis, Vol. 29, pp. 435.

    Article  Google Scholar 

  • Bessis, M. and Mohandas, N., 1975, “A Differactometric Method for the Measurement of Cellular Deformability,”Blood Cells, Vol. 1, pp. 307–312.

    Google Scholar 

  • Chien, S., Usami, S., Dellenback, R. J. and Gregersen, M.I., 1967, “Blood Viscosity: Influence of Erythrocyte Deformation,”Science, Vol. 157, pp. 827–829.

    Article  Google Scholar 

  • Chien, S., 1987, “Red Cell Deformability and its Relevance to Blood Flow,”Annu Rev Physiol., Vol.49, pp. 177–192.

    Article  Google Scholar 

  • Diamantopoulos, E. J., Kittas, C., Charitos, D., Grigoriadou, M., Ifanti, G. and Raptis, S. A., 2004, “Impaired Erythrocyte Deformability Precedes Vascular Changes in Experimental Diabetes Mel-litus,”Horm. Metab. Res. Vol. 36, pp. 142–147.

    Article  Google Scholar 

  • Dobbe, J. G. G., Hardeman, M. R., Streekstra, G. J., Strackee, J., Ince, C. and Grimbergen, C. A., 2002, “Analyzing Red Blood Cell-Deformability Distributions,”Blood Cells, Molecules, and Diseases, Vol. 28, pp. 373–384.

    Article  Google Scholar 

  • Dobbe, J. G. G., Hardeman, M. R., Streekstra, G. J., Strackee, C. and Grimbergen, C. A., 2004, “Validation and Application of an Automated Rheoscope for Measuring Red Blood Cell Deformability Distributions in Different Species,”Biorheology, Vol. 41, pp. 65–77.

    Google Scholar 

  • Evans, E. A. and LaCelle, P. L., 1975, “Intrinsic Material Properties of Ery-throcyte Membrane Indicated by Mechanical Analysis of Deformation,”Blood, Vol. 45, pp. 29–43.

    Google Scholar 

  • Guck, J., Ananthakrishnan, R. Mahmood, Moon, T. J., Cunningham, C. C. and Ka, J., 2001, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,”Biophysical J., Vol. 81, pp. 767–784.

    Article  Google Scholar 

  • Hanss, M., 1983, “Erythrocyte Filterability Measurement by the Initial Flow Rate Method,”Biorheology, Vol. 20, pp. 199–211.

    Google Scholar 

  • Hardeman, M. R., Goedhart, P. T., Dobbe, J. G. G. and Lettinga, K. P., 1994, “Laser-assisted Optical Rotational Cell Analyser (LORCA): A New Instrument for Measurement of Various Structural Hemorheological Parameters,”Clin. Hemorheol. Vol. 14, pp. 605–610.

    Google Scholar 

  • Hiruma, H., Noguchi, C. T., Uyesaka, N., Schechter, A. N. and Rodgers, G. P., 1995, “Contributions of Sickle Hemoglobin Polymer and Sickle Cell Membranes to Impaired Filterability,”Am. J. Physio., Vol. 268, pp. H2003–2008.

    Google Scholar 

  • Hochmuth, R. M. and Waugh, R., 1986, “Erythrocyte Membrane Elasticity and Viscosity,”Annu Rev Physiol., Vol. 49, pp. 209–219.

    Article  Google Scholar 

  • Jeffrey, D. J. and Acrivos, A., 1977, “The Rheological Properties of Suspensions of Rigid Particles,”AIChE J. Vol. 22, pp. 417–432.

    Article  Google Scholar 

  • Lowe, G., 1988.Clinical Blood Rheology, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Lux, S. E., 1979, “Dissecting the Red Cell Membrane Skeleton,”Nature, Vol. 281, pp. 426–429.

    Article  Google Scholar 

  • Macosko, C. W. 1993,Rheology: Principles, Measurements, and Applications, VCH, New York, pp. 237–258.

    Google Scholar 

  • Mohandas, N. and Chasis, J. A., 1993, “Red Blood Cell Deformability, Membrane Material Properties and Shape: Regulation by Transmembrane, Skeletal and Cytosolic Proteins and Lipids,”Semin Hematol., Vol. 30, pp. 171–192.

    Google Scholar 

  • Puniyani, R. R., Ajmani, R. and Kale, P. A., 1991, “Risk Factors Evaluation in Some Cardiovascular Diseases,”J. Biomed. Eng., Vol. 13, pp. 441–443.

    Article  Google Scholar 

  • Shin, S., Keum, D. Y. and Ku, Y. H., 2002. “Blood Viscosity Measurement Using a Pressure-Scanning Capillary Viscometer,”KSME Int. J., Vol. 16, pp. 1719–1724.

    Google Scholar 

  • Shin, S., Ku, Y. H., Park, M. S., Moon, S. Y., Jang, J. H. and Suh, J. S., 2004a, “Laser-diffraction Slit Rheometer to Measure Red Blood Cell Deformability,”Rev. Sci. Instr., Vol. 75, pp. 559–561.

    Article  Google Scholar 

  • Shin, S., Lee, S. W. and Ku, Y. H., 2004b, “Measurements of Blood Viscosity using a Pressure-scanning Slit Viscometer,”KSME Int. J., Vol. 18, pp. 1036–1041.

    Google Scholar 

  • Stoltz, J.-F., Singh, M. and Riha, P., 1999,Hemorheology in Practice, IOS Press, Amsterdam, Netherlands, pp. 67–72.

    Google Scholar 

  • Testa, I., Manfrini, S., Gregorio, F., Refe, A., Bonfigli, A. R., Testa, R. and Piantanelli, L., 1995, “Red Blood Cell Deformability in Diabetic Retinopathy,”Biorheology, Vol. 32, pp. 389–395.

    Article  Google Scholar 

  • Wang, X., Zhao, H., Zhuang, F. Y. and Stoltz, J. F., 1999, “Measurement of Erythrocyte Deformability By two Laser Diffraction Methods,”Clinical Hemorheol and Microcirculation, Vol. 21, pp. 291–295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sehyun Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, S., Ku, Y., Park, MS. et al. Deformability of red blood cells: A determinant of blood viscosity. J Mech Sci Technol 19, 216–223 (2005). https://doi.org/10.1007/BF02916121

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916121

Key Words

Navigation