Skip to main content
Log in

Resistance and resilience of subalpine wetlands with respect to prolonged drought

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Vegetation dynamics of subalpine wetlands in the Sierra Nevada, California, were studied from 1988 through 1996. During this period, the region experienced a drought lasting from 1988 to 1994 and reaching its extreme in 1992. Our intention was to analyze the changes in plant species diversity, composition, and biomass, and interpret them in terms of drought resistance and resilience. Four plant communities, dominated respectively byCarex rostrata, Juncus balticus, Scirpus acutus orNuphar polysepalum were clearly discernible in the marsh along the water depth gradient. Species diversity ofCarex rostrata, Scirpus acutus andNuphar polysepalum communities was the highest during the driest year, 1992, while biomass was lowest for all vegetation types in that year. Dominance ofCarex andJuncus has not changed over the years, however,Scirpus almost totally disappeared from the marsh, and theNuphar zone become dominated by the rhizomatous perennial,Hippuris vulgaris, and terrestrial ruderals in dry years. In terms of changes in species composition,Carex andJuncus communities were both resistant and resilient. TheNuphar community seemed to be less resistant and more resilient, while theScirpus community was neither resistant nor resilient. If we consider biomass per plot as a variable of interest, regardless of species composition, thenCarex andJuncus were to some extent resistant and all plots were resilient because they were able to recover quickly to their pre-drought biomass. Life histories of dominant species were a more important determinant of community stability than species diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aschmann H. (1984): A restrictive definition of Mediterranean climates.Bull. Soc. Bot. France, 131, Actual. Bot., 1984(2–4): 21–30.

    Google Scholar 

  • Auclair A.N.D., Bouchard A. &Pajaczkowski J. (1976): Plant standing crop and productivity relations in aScirpus-Equisetum wetland.Ecology 57: 941–952.

    Article  Google Scholar 

  • Benedict N.B. (1982): Mountain meadows: Stability and change.Madroño 29: 148–153.

    Google Scholar 

  • Benedict N.B. (1984): Classification and dynamics of subalpine meadow ecosystems in the southern Sierra Nevada. In:Warner R.E. &Hendrix K.M. (eds.),California riparian systems—ecology, conservation, and productive management, University of California Press, Berkeley, pp. 268–276.

    Google Scholar 

  • Benedict N.B. &Major J. (1981): A physiographic classification of subalpine meadows of the Sierra Nevada, California.Madroño 29: 1–12.

    Google Scholar 

  • Boutin C. &Keddy P.A. (1993): A functional classification of wetland plants.J. Veg. Sci. 4: 591–600.

    Article  Google Scholar 

  • Buckland S.M., Grime J.P., Hodgson J.G. &Thompson K. (1997): A comparison of plant responses to the extreme drought of 1995 in northern England.J. Ecol. 85: 875–882.

    Article  Google Scholar 

  • Burton T.M. (1985): The effects of water level fluctuations on Reat Lakes coastal marshes. In:Prince H.H. &D’Itri F.M. (eds.),Coastal wetlands, Lewis Publ., Chelsea, pp. 3–13.

    Google Scholar 

  • de Swart E.O.A.M., van der Valk A.G., Koehler K.J. &Barendregt A. (1994): Experimental evaluation of realized niche models for predicting responses of plant species to a change in environmental conditions.J. Veg. Sci. 5: 541–552.

    Article  Google Scholar 

  • Djohan T.S. (1993):Nutrient dynamics in a subalpine wetland of California PhD. Thesis, University of California, Davis.

    Google Scholar 

  • Ellison A.M. &Bedford B.L. (1995): Response of a wetland vascular plant community to disturbance: a simulation study.Ecol. Aplic. 5: 109–123.

    Article  Google Scholar 

  • Frank D.A. &McNaughton S.J. (1991): Stability increases with diversity in plant communities: empirical evidence from the 1988 Yellowstone drought.Oikos 62: 360–362.

    Article  Google Scholar 

  • Gerloff G.C. &Krombholz P.H. (1966): Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants.Limnol. & Oceanogr. 11: 529–537.

    Google Scholar 

  • Goldman C.R. (1988): Primary productivity, nutrients and transparency during the early onset of eutrophication in ultra oligotrophic Lake Tahoe, California/Nevada.Limnol. & Oceanogr. 33: 1321–1333.

    Article  CAS  Google Scholar 

  • Goldman C.R. (1989): Lake Tahoe: preserving a fragile ecosystem.Environment 31: 6–30.

    Google Scholar 

  • Grime J.P. (1979):Plant strategies and vegetation processes. John Wiley & Sons, Chichester.

    Google Scholar 

  • Halpren C.B. (1986): Montane meadow plant associations in Sequoia National Park, California.Madroño 33: 1–23.

    Google Scholar 

  • Hill M.O. (1973): Diversity and evenness: A unifying notation and its consequences.Ecology 54: 427–432.

    Article  Google Scholar 

  • Hogenbirk J.C. &Wein R.W. (1991): Fire and drought experiments in northern wetlands: a climate change analogue.Canad J. Bot. 69: 1991–1997.

    Article  Google Scholar 

  • Johnson K.H., Vogt K.A., Clark H.J., Smitz O.J. &Vogt D.J. (1996): Biodiversity and the productivity and stability of ecosystems.Trends Ecol. Evol. 11: 372–377.

    Article  Google Scholar 

  • Kautsky L. (1988): Life strategies of aquatic soft bottom macrophytes.Oikos 53: 126–135.

    Article  Google Scholar 

  • Keddy P.A. &Reznicek A.A. (1985): Vegetation dynamics, buried seeds, and water level fluctuations on the shorelines of the Great Lakes. In:Prince H.H. &D’Itri F.M. (eds.),Coastal wetlands, Lewis Publ., Chelsea, pp. 33–57.

    Google Scholar 

  • Kenkel N.C. &Orloci L. (1986): Applying metric and nonmetric multidimensional scaling to ecological studies: some new results.Ecology 67: 919–928.

    Article  Google Scholar 

  • Krusi B.O. &Wein R.W. (1988): Experimental studies on the resiliency of floatingTypha mats in a freshwater marsh.J. Ecol. 76: 60–72.

    Article  Google Scholar 

  • Lepš J., Osbornová-Kosinová J. &Rejmánek M. (1982): Community stability, complexity and species life history strategies.Vegetatio 50: 53–60.

    Article  Google Scholar 

  • Loreau M. (1998): Biodiversity and ecosystem functioning: A mechanistic model.Proc. Natl. Acad. Sci. USA 95: 5632–5636.

    Article  PubMed  CAS  Google Scholar 

  • MacGillivray C.W., Grime J.P. &The Integrated Screening Programme (ISP) Team (1995): Testing predictions of the resistance and resilience of vegetation subjected to extreme events.Funct. Ecol. 9: 640–649.

    Article  Google Scholar 

  • Mitchell R.S. (1968): Variation in thePolygonum amphibium complex and its taxonomic significance.Univ. Calif. Publ. Bot. 45: 1–65.

    Google Scholar 

  • Naeem S.L., Thompson J., Lawler S.P., Lawton J.H. &Woodfin R.M. (1994): Declining biodiversity can alter the performance of ecosystems.Nature 368: 734–737.

    Article  Google Scholar 

  • Naaem S., Hakansson K., Lawton J.H. &Crawley M.J. (1996): Biodiversity and plant productivity in a model assemblage of plant species.Oikos 76: 259–264.

    Article  Google Scholar 

  • Neilson J.A. (1973): Lake Tahoe vegetation II. Natural vegetation zones.Environm. Qual. Ser. 14: 7–35.

    Google Scholar 

  • Pedhazur E.J. (1982):Multiple regressions in behavioral research. CBS College Publ., New York.

    Google Scholar 

  • Podani J. (1998):SYN-TAX 5.10. Mac. Computer programs for multivariate data analysis on the Macintosh system. User's guide. Scientia Publishing, Budapest.

    Google Scholar 

  • Rejmánková E. (1973): Biomass of macrophytes growing in the Nesyt fishpond.Stud. Českoslov. Akad. Věd. 15: 107–116.

    Google Scholar 

  • Rejmánková E., Pope K.O., Post R.A. &Maltby E. (1996): Herbaceous wetlands of the Yucatan Peninsula: Communities at extreme ends of environmental gradients.Int. Rev. Gesamten Hydrobiol. 81: 225–254.

    Article  Google Scholar 

  • Retheford R.D. &Choe M.K. (1993).Statistical models for causal analysis. John Wiley; New York.

    Google Scholar 

  • Semeniuk C.A. &Semeniuk V. (1995): A geomorphic approach to global classification for inland wetlands.Vegetatio 118: 103–124.

    Article  Google Scholar 

  • Singer D.K., Jackson S.T., Madsen B.J. &Wilcox D.A. (1996): Differentiating climatic and successional influences on long-term development of a marsh.Ecology 77: 1765–1778.

    Article  Google Scholar 

  • Smith G.L. (1984):A flora of the Tahoe basin and neighboring areas and supplement. The University of San Francisco, San Francisco.

    Google Scholar 

  • Spence D.H.N. (1982): The zonation of plants in freshwater lakes.Advances Ecol. Res. 12: 37–125.

    Article  Google Scholar 

  • Stone L., Gabric A. &Berman T. (1996): Ecosystem resilience, stability and productivity: seeking a relationship.Amer. Naturalist 148: 892–903.

    Article  Google Scholar 

  • ter Braak C.J.F. &Wiertz J. (1994): On the statistical analysis of vegetation change: a wetland affected by water extraction and soil acidification.J. Veg. Sci. 5: 361–372.

    Article  Google Scholar 

  • Tilman D. (1996): Biodiversity: Population versus ecosystem stability.Ecology 77: 350–363.

    Article  Google Scholar 

  • Tilman D. &Downing J.A. (1994): Biodiversity and stability in grasslands.Nature 367: 363–365.

    Article  Google Scholar 

  • Tilman D., Lehman C.L. &Brostow C.E. (1998): Diversity-stability relationships: statistical inevitability or ecological consequence?Amer. Naturalist 151: 277–282.

    Article  CAS  Google Scholar 

  • Tilman D. &Wedin D. (1991): Plant traits and resource reduction for five grasses growing on a nitrogen gradient.Ecology 72: 685–700.

    Article  Google Scholar 

  • van der Valk A.G. (1994): Effects of prolonged flooding on the distribution and biomass of emergent species along a freshwater wetland coenocline.Vegetatio 110: 185–196.

    Article  Google Scholar 

  • van der Valk A.G. &Davis C.B. (1978): The role of the seed bank in the vegetation dynamics of prairie glacial marshes.Ecology 59: 322–335.

    Article  Google Scholar 

  • van der Valk A.G. &Davis C.B. (1980): The impact of a natural drawdown on the growth of four emergent species in a prairie glacial marsh.Aquatic Bot. 9: 301–322.

    Article  Google Scholar 

  • Vasander J.H. &Laiho R. (1995): Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland.J. Appl. Ecol. 32: 785–802.

    Article  Google Scholar 

  • Virágh K. (1989): An experimental approach to the study of community stability: resilience and resistance.Acta Bot. Hung. 35: 99–125.

    Google Scholar 

  • Wheeler R.D. &Giller K.E. (1982): Species richness of herbaceous fen vegetation in Broadland, Norfolk in relation to the quantity of above-ground plant material.J. Ecol. 70: 179–200.

    Article  Google Scholar 

  • Westman W.E. (1978): Measuring the inertia and resilience of ecosystems.BioScience 28: 705–710.

    Article  Google Scholar 

  • Westman W.E. (1986): Resilience: concepts and measures. In:Dell B., Hopkins A.J.M. &Lamont B.B. (eds.),Resilience in mediterranean-type ecosystems, Dr. W. Junk, Dordrecht, pp. 5–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rejmánková, E., Rejmánek, M., Djohan, T. et al. Resistance and resilience of subalpine wetlands with respect to prolonged drought. Folia Geobot 34, 175–188 (1999). https://doi.org/10.1007/BF02913394

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913394

Keywords

Navigation