Skip to main content
Log in

Antioxidant status in patients with acute myocardial infarction

  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Free radicals play an important role in the pathogenesis of tissue damage in many clinical disorders, including atherosclerosis. Antioxidants protect the body from damage caused by free radicals. In this study we investigated oxidative stress, antioxidants and inflammatory molecules in patients with acute myocardial infarction. This study has been carried out on 106 patients with acute myocardial infarction, (89 men and 17 females). The control group consisted of 50 healthy, age-matched subjects (40 men and 10 females). Levels of Glucose, lipid profile, glutathione reduced, glutathione peroxidase, Superoxide dismutase, Glycosylated hemoglobin, fibrinogen, vitamin C, vitamin E, malondialdehyde, ceruloplasmin, adenosine deaminase, lysozyme and sialic acid were measured. Malondialdehyde and ceruloplasmin levels were significantly high and antioxidants such as vitamin C, vitamin E, glutathione reduced, glutathione peroxidase and superoxide dismutase were significantly decreased in diabetic and non-diabetic AMI patients as compared with control (p<0.001). Inflammatory markers showed significant rise in diabetic patients as compared with controls. Our results clearly show increased inflammation and oxidative stress in patients with acute myocardial infarction. Depression of antioxidant system in these patients confirms this conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carrol CE. Oxygen free radicals and human disease. Ann Int Med 1987; 107: 526–45.

    Google Scholar 

  2. Shrinivas K, Vijaya Bhaskar M, Aruna Kumari R, Nagaraj K, Reddy KK. Antioxidants, lipid peroxidation and lipoproteins in primary hypertension. Indian Heart J 2000; 52: 285–8.

    Google Scholar 

  3. Block G, Dietrich M, Norkus EP, Morrow JD, Hudes M, Cann B, et al. Factors associated with oxidative stress in human populations. Am J Epidemiol 2002; 156: 274–85.

    Article  PubMed  Google Scholar 

  4. Libby P. Vascular biology of atherosclerosis: Overview and state of art. Am J Cardiol 2003; 91(suppl): 3A-6A.

    Article  PubMed  CAS  Google Scholar 

  5. Beutler E, Duran O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med 1963; 61 (5): 882–8.

    PubMed  CAS  Google Scholar 

  6. Paglia DE, Valentine WN. Studies on quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967; 70: 158–69.

    PubMed  CAS  Google Scholar 

  7. Winterbourn CC, Hawkins RE, Brian M, Carrell RW. The estimation of red cell superoxide dismutase activity. J Lab Clin Med 1975; 85 (2): 337–41.

    PubMed  CAS  Google Scholar 

  8. Fluckiger R, Winterhalter KH. In vitro synthesis of hemoglobin A1G. FEBS Lett 1976; 71: 356–60.

    Article  PubMed  CAS  Google Scholar 

  9. Varley H, Gowenlock AH, Bell M. Determination of plasma fibrinogen by tyrosine method (Lampert). In “Practical Clinical Biochemistry” 1986, Heinemann Medical Books, London, Vol. 1; 5th edition, Chapter 19, 557-8.

    Google Scholar 

  10. Varley H. Determination of plasma ascorbate by 2,6-Dichlorophenolindophenol titration. In “Varley's Practical Clinical Biochemistry” Ed: Gowenlock AH, McMurray JR and McLauchlan DM, Heinemann Medical Books, London 1988; Vol. 1; 6TH edition; Chapter 35: 927.

    Google Scholar 

  11. Baker H, Frank O. Determination of serum tocopherol, In “Varley's Practical Clinical Biochemistry” Ed: Gowenlock AH, McMurray JR and McLauchlan DM, Heinemann Medical Books, London 1988; Vol. 1; 6TH edition, Chapter 35: 902.

    Google Scholar 

  12. Sasikala M, Subramanyam C, Sadasivudu B. Early oxidative change in low density lipoproteins during progressive chronic renal failure. Ind J Clin Biochem 1999; 14(2); 176–83.

    Article  CAS  Google Scholar 

  13. Ravin HA. An improved colorimetric enzymatic assay of ceruloplasmin. J Lab Clin Med 1961; 58(1): 161–8.

    PubMed  CAS  Google Scholar 

  14. Martinek RG. Micromethod for estimation of serum adenosine deaminase. Clin Chem 1963; 9(5): 620–25.

    CAS  Google Scholar 

  15. Harrison JF, Lunt GS, Scott P, Blainey JD. Urinary lysozyme, ribonuclease and low molecular weight protein in renal disease. Lancet 1968; 1: 371–5.

    Article  PubMed  CAS  Google Scholar 

  16. Cabezas JA, Vazquez Porto J. Sialic acid in human serum. Clin Chem 1964; 10(11): 986–90.

    PubMed  CAS  Google Scholar 

  17. Dubois-Rande JL, Artigou JY, Darmon JY, Habbal R, Manuel C, Tayarani I, et al. Oxidative stress in patients with unstable angina. Eur Heart J 1994; 15(2): 179–83.

    PubMed  CAS  Google Scholar 

  18. McMurray J. Evidence of oxidative stress in chronic heart failure in humans. Eur Heart J 1993; 14 (11): 1493–7.

    PubMed  CAS  Google Scholar 

  19. Engstrom G, Stavenow L, Hedblad B, Lind P, Eriksson KF, Janzon L, et al. Inflammation-sensitive plasma proteins, diabetes, and mortality and incidence of myocardial infarction and stroke: a population-based study. Diabetes 2003; 52 (2): 442–47.

    Article  PubMed  CAS  Google Scholar 

  20. Fox PL, Mukhopadhyay C, Ehrenwald E. Structure, oxidant activity, and cardiovascular mechanisms of human ceruloplasmin. Life-Sci 1995; 56 (21): 1749–58.

    Article  PubMed  CAS  Google Scholar 

  21. Singh RB, Niaz MA, Sharma JP, Kumar R, Bishnoi I, Begom R. Plasma levels of antioxidant vitamins and oxidative stress in patients with acute myocardial infarction. Acta Cardiol 1994; 49: 441–52.

    PubMed  CAS  Google Scholar 

  22. Kharb S. Low blood glutathione levels in acute myocardial infarction. Ind J Med Sci 2003; 57 (8): 335–7.

    Google Scholar 

  23. Kumar KV, Das UN. Are free radicals involved in the pathobiology of human essential hypertension? Free Radic Res Commun 1993; 19(1): 59–66.

    Article  PubMed  CAS  Google Scholar 

  24. Stec JJ, Silbershatz H, Tofler GH, Matheney TH, Sutherland P, Lipinska I et al. Association of fibrinogen with cardiovascular risk factors and cardiovascular disease in the Framingham offspring population. Circulation 2000; 102(14): 1634–38.

    PubMed  CAS  Google Scholar 

  25. Hackam DG, Anand SS. Emerging risk factors for atherosclerotic vascular disease. JAMA-India 2004; 3 (2): 34–41.

    Google Scholar 

  26. Jose J, Selvakumar D, Selvakumar R, Kanagasapabathy AS, Jeyaseelan L. Plasma fibrinogen-an independent risk factor for ischemic heart disease. Ind Heart J 1998; 50(1): 45–8.

    CAS  Google Scholar 

  27. Kannel WB, Wolf PA, Castelli WP, D'Agostino RB. Fibrinogen and risk of cardiovascular disease. JAMA 1987; 258 (9): 1183–6.

    Article  PubMed  CAS  Google Scholar 

  28. Acevedo M, Foody JM, Pearce GL, Sprecher DL. Fibrinogen: Association with cardiovascular events in an outpatient clinic. Am Heart J 2002; 143(2): 277–82.

    Article  PubMed  CAS  Google Scholar 

  29. Sari RA, Taysi S, Yilmaz O, Bakan N. Correlation of serum levels of adenosine deaminase activity and its isoenzymes with disease activity in rheumatoid arthritis. Clin Exp Rheumatol 2003; 21 (1): 87–90.

    PubMed  CAS  Google Scholar 

  30. Frode TS, Medeiros YS. Myeloperoxidase and adenosine deaminase levels in the pleural fluid leakage induced by carrageenan in the mouse model of pleurisy. Mediators Inflamm 2001; 10(4): 223–7.

    Article  PubMed  CAS  Google Scholar 

  31. Kurtul N, Pence S, Akarsu E, Kocoglu H, Aksoy Y, Aksoy H. Adenosine deaminase activity in the serum of type 2 diabetic patients. Acta Medica (Hradec Kralove) 2004; 47(1): 33–5.

    CAS  Google Scholar 

  32. Welman E, Colbeck JF, Selwyn AP, Fox KM, Orr I. Plasma lysosomal enzyme activity in acute myocardial infarction and the effects of drugs. Adv Myocardiol 1980; 2: 359–69.

    PubMed  CAS  Google Scholar 

  33. Welman E, Selwyn AP, Peters TJ, Colbeck JF, Fox KM. Plasma lysosomal enzyme activity in acute myocardial infarction. Cardiovasc Res 1978; 12(2): 99–105.

    Article  PubMed  CAS  Google Scholar 

  34. Hickey NC, Gosling P, Barr S, Shearman CP, Simms MH. Effect of surgery on the systemic inflammatory response to intermittent claudication. Br J Surg 1990; 77 (10): 1121–4.

    Article  PubMed  CAS  Google Scholar 

  35. Crook MA, Goldsmith L, Ameerally P, Lumb P, Singh N, Miell J, et al. Serum sialic acid, a possible cardiovascular risk factor is not increased in Fijian Melanesians with impaired glucose tolerance or impaired fasting glucose. Ann Clin Biochem 2002; 39 (6): 606–8.

    Article  PubMed  CAS  Google Scholar 

  36. Haffner SM. Do interventions to reduce coronary heart disease reduce the incidence of type 2 diabetes? A possible role for inflammatory factors. Circulation 2001; 103(3): 346–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neela Patil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, N., Chavan, V. & Karnik, N.D. Antioxidant status in patients with acute myocardial infarction. Indian J Clin Biochem 22, 45–51 (2007). https://doi.org/10.1007/BF02912880

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02912880

Key words

Navigation