Skip to main content
Log in

Myocardial recovery during post-ischemic reperfusion: Optimal concentrations of Na+ and Ca2+ in the reperfusate and protective effects of amiloride added to cardioplegic solution

  • Originals
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Summary

The effects of Na+ and Ca2+ concentrations in the reperfusate on post-ischemic myocardial recovery were examined. Also, the myocardial protective effects of amiloride, an inhibitor of the Na+/Ca2+ and Na+/H+ exchange systems, added to cardioplegic solutions were assessed, using an isolated working rat heart perfusion system. Global myocardial ischemia was induced by 30-min normothermic cardioplegic arrest, using St. Thomas’ solution. The concentration of Na+ in the reperfusate varied, stepwise, from 75 to 145 mM/l, and that of Ca2+, from 0.1 to 2.5 mM/l. In this study post-ischemic functional recovery was best at 110 mM/l Na+ and 1.2–1.8 mM/l Ca2+ in the reperfusate. A significantly greater postischemic functional recovery and a lower creatine kinase release were observed when amiloride was added to the cardioplegic solution. Ca2+ overload via Na+/Ca2+ and Na+/H+ exchange systems would, thus, appear to be due, at least in part, to post-ischemic reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayler WG (1981) The role of calcium in the ischemic myocardium. Am J Pathol 102:262–270

    PubMed  CAS  Google Scholar 

  2. Nayler WG, Poole-Wilson PA, Williams A (1979) Hypoxia and calcium. J Mol Cell Cardiol 11:683–706

    Article  PubMed  CAS  Google Scholar 

  3. Nayler WG, Panagiotopoulos S, Elz JS, Daly MJ (1988) Calcium-mediated damage during post-ischemic reperfusion. J Mol Cell Cardiol 20:41–54

    Article  PubMed  CAS  Google Scholar 

  4. Katz AM, Reuter H (1979) Cellular calcium and cardiac cell death. Am J Cardiol 44:188–190

    Article  PubMed  CAS  Google Scholar 

  5. Nayler WG, Sturrock WJ, Panagiotopoulos S (1985) Calcium and myocardial ischemia. Control and manipulation of calcium movement. In: Parratt JR (ed) Raven, New York, pp 303–324

    Google Scholar 

  6. Goto N, Kinoshita K (1981) Ca2+, its protective effects on ischemic myocardium (in Japanese). Biomed Ther 6:211–216

    Google Scholar 

  7. Regan TJ, Broisman L, Haider B, Eaddy C, Oldewurtel HA (1980) Dissociation of myocardial sodium and potassium alteration in mild versus severe ischemia. Am J Physiol 238:575–580

    Google Scholar 

  8. Bersohn MM, Philipson KD, Fukushima JY (1982) Sodium-calcium exchange and sarcolemmal enzymes in ischemic rabbit hearts. Am J Physiol 242:288–295

    Google Scholar 

  9. Renlund DG, Gerstenblith G, Labatta EG, Jacobus WE, Kallman CH, Weisfeldt ML (1984) Perfused sodium during ischemia modifies post-ischemic functional and metabolic recovery in the rabbit heart. J Mol Cell Cardiol 16:795–801

    Article  PubMed  CAS  Google Scholar 

  10. Crake T, Poole-Wilson PA (1990) Calcium exchange in rabbit myocardium during and after hypoxia: Role of sodium-calcium exchange. J Mol Cell Cardiol 22: 1051–1064

    Article  PubMed  CAS  Google Scholar 

  11. Tani M, Neely JR. Na+ accumulation increases Ca2+ overload and impairs function in anoxic rat heart. J Mol Cell Cardiol 22:57–72

  12. Luzdunski M, Frelin C, Vigne P (1985) The sodium hydrogen exchange system in cardiac cells: Its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17:1029–1042

    Article  Google Scholar 

  13. Kinoshita K, Koe M, Matsuzaki H, Masuda M, Aso T, Mayumi H, Kawauchi Y, Tokunaga K, Ueno Y (1990) Ischemia reperfusion injury and divalent cations (in Japanese). J Jpn Assoc Thorac Surg 38:802–806

    Google Scholar 

  14. Grinwald PM (1982) Calcium uptake during post-ischemic reperfusion in the isolated rat heart. Influence of extracellular sodium. J Mol Cell Cardiol 14:359–365

    Article  PubMed  CAS  Google Scholar 

  15. Grinwald PM, Brosnahan C (1987) Sodium imbalance as a cause of calcium overload in post-hypoxic reoxygenation injury. J Mol Cell Cardiol 19:487–495

    Article  PubMed  CAS  Google Scholar 

  16. Reeves JP, Sutko JL (1983) Competitive interactions of sodium and calcium with the sodium-calcium exchange system of cardiac sarcolemmal vesicles. J Biol Chem 258:3178–3182

    PubMed  CAS  Google Scholar 

  17. Neely JR, Rovetto MJ, Whitmer JT, Morgan HE (1973) Effect of ischemia on function and metabolism of the isolated working rat heart. Am J Physiol 225:651–658

    PubMed  CAS  Google Scholar 

  18. Kirklin JW, Conti VR, Blackstone EH (1979) Prevention of myocardial damage during cardiac operations. New Engl J Med 301:135–141

    PubMed  CAS  Google Scholar 

  19. Zimmerman ANE, Daems W, Hulsmann WC, Snijder J, Wisse E, Durrer D (1967) Morphological changes of heart muscle caused by successive perfusion with calcium-free and calcium-containing solutions (calcium paradox). Cardiovasc Res 1:201–209

    Article  CAS  Google Scholar 

  20. Yamamoto F, Tanaka K, Takahashi R, Yoshida S, Yamamoto H, Ichikawa H, Shibata T, Kosakai Y, Kawazoe K, Yagihara T, Fujita T (1990) Mechanisms and prevention of post-ischemic reperfusion injury of the myocardium: Experimantal and clinical study (in Japanese). J Jpn Assoc Thorac Surg 38:807–811

    Google Scholar 

  21. Follette DM, Fey KH, Livesay JJ, Nelson RL, Maloney JV, Buckberg GD (1976) Citrate reperfusion of ischemic heart in cardiopulmonary bypass. Surg Forum 27: 244–246

    PubMed  CAS  Google Scholar 

  22. Follette DM, Fey KH, Buckberg GD, Helly JJ, Steed DL, Foglia RP, Malovey JV (1981) Reducing postischemic damage by temporary modification of reperfusate calcium, potassium, pH, and osmolarity. J Thorac Cardiovasc Surg 82:221–238

    PubMed  CAS  Google Scholar 

  23. Shine KI, Douglas AM (1983) Low calcium reperfusion of ischemic myocardium. J Mol Cell Cardiol 15:251–260

    Article  PubMed  CAS  Google Scholar 

  24. Irisawa T, Aoyama K, Hoshinaga S, Nishimura K, Imai T, Washio M, Wakabayashi A, Rietfors K (1983) The effects of calcium concentration of reperfusates on the recovery of rabbit hearts following anoxic cardioplegia (in Japanese). J Jpn Assoc Thorac Surg 31:1498–1504

    CAS  Google Scholar 

  25. Hamasaki N (1987) Effects of hypothermia on calcium-related reperfusion injury in the isolated rat heart (in Japanese). J Yonago Med Assoc 38:259–267

    Google Scholar 

  26. Menasche P, Grousset C, Boccard G, Piwnica A (1984) Protective effect of an asanguineous reperfusion solution on myocardial performance following cardioplegic arrest. Ann Thorac Surg 37:222–228

    PubMed  CAS  Google Scholar 

  27. Ohashi T, Yamamoto F, Yamamoto H, Ichikawa H, Komai H, Shibata T, Nakajima N, Kawashima Y (1991) The effects of calcium concentration of reperfusion solution upon myocardial protection (in Japanese). J Jpn Assoc Thorac Surg 39:1971–1975

    CAS  Google Scholar 

  28. Ferrari R, Albertini A, Curello S, Ceconi C, Lisa FP, Raddius R, Visioli O (1986) Myocardial recovery during post-ischemic reperfusion: Effects of nifedipline, calcium, and magnesium. J Mol Cell Cardiol 18:487–498

    Article  PubMed  CAS  Google Scholar 

  29. Ashida Y (1990) A study on reciprocal dependency of calcium and magnesium concentrations in the reperfusate for post-ischemic myocardial function (in Japanese). J Yonago Med Assoc 41:23–33

    CAS  Google Scholar 

  30. Ohashi T, Yamamoto F, Yamamoto H, Ichikawa H, Shibata T, Shimada Y, Nakajima N, Kawashima Y (1991) The effects of magnesium concentration in the reperfusion solution upon myocadial protection (in Japanese). J Jpn Assoc Thorac Surg 39:2134–2139

    CAS  Google Scholar 

  31. Tani M, Neely JR (1990) Effects of modification of perfusate electrolyte composition on reperfusion injury in rat heart (in Japanese). J Keio Med Soc 67:611–618

    Google Scholar 

  32. Tani M, Neely JR (1990) Mechanisms of reduced reperfusion injury by low Ca2+ and/or high K+. Am J Physiol 258:1025–1031

    Google Scholar 

  33. Ohashi T, Yamamoto F, Yamamoto H, Ichikawa H, Shibata T, Shimada Y, Ishikawa T, Kagizaki K, Kumada Y, Kawashima Y (1992) The effects of potassium concentration in the reperfusion solution upon myocardial protection (in Japanese). J Jpn Assoc Thorac Surg 40:11, 1998–2004

    CAS  Google Scholar 

  34. Trosper TL, Philipson KD (1983) Effect of divalent and trivalent cations on Na+−Ca2+ exchange in cardiac sarcolemmal vesicles. Biochem Biophys Acta 731:63–68

    Article  PubMed  CAS  Google Scholar 

  35. Ying-Xin Zhuang, Cragoe EJ Jr, Shaikewitz T, Glaser L, Cassel D (1984) Characterization of potent Na+/H+ exchange inhibitors from the amiloride series in A43 cells. Biochemistry 23:4481–4488

    Article  Google Scholar 

  36. Reynolds EE, Brum JM, Cragoe EJ Jr, Ferrario CM (1988) Effect of Na+/H+ exchange inhibitors on agonist-induced contraction of rat aorta. J Pharm Exp Ther 247:1146–1151

    CAS  Google Scholar 

  37. Rabkin SW (1989) Comparison of the effect of amiloride and its analogue dichlorobenzamil on cardiac chronotropic responses to ouabain in myocardial cell aggregates in culture. Pharmacology 39:230–239

    Article  PubMed  CAS  Google Scholar 

  38. Wettwer E, Himmel H, Ravens U (1992) Amiloride derivatives as blockers of Na+/Ca2+ exchange: Effects on mechanical and electrical function of guinea pig myocardium. Pharmacol Toxicol 71:95–102

    PubMed  CAS  Google Scholar 

  39. Scholz W, Abus U, Linz W, Marforana P, Lang HJ, Scholkens BA (1992) Effects of Na+/H+ exchange inhibitors in cardiac ischemia. J Mol Cell Cardiol 24:731–740

    Article  PubMed  CAS  Google Scholar 

  40. Karmazyn M, Ray M, Haist JV (1983) comparative effects of Na+/H+ exchange inhibitors against cardiac injury produced by ischemia/reperfusion, hypoxia/reoxygenation, and the calcium paradox. J Cardiovasc Pharm 21:172–178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, T., Takagi, M., Kugimiya, T. et al. Myocardial recovery during post-ischemic reperfusion: Optimal concentrations of Na+ and Ca2+ in the reperfusate and protective effects of amiloride added to cardioplegic solution. Heart Vessels 10, 310–317 (1995). https://doi.org/10.1007/BF02911389

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02911389

Key words

Navigation