Skip to main content
Log in

The Al−Cu (Aluminum-Copper) system

  • Provisional
  • Al−Cu
  • Published:
Bulletin of Alloy Phase Diagrams

An Erratum to this article was published on 01 September 1980

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Cited References (crystal structure)

  1. T. B. Massalshi and H. W. King, Alloy Phases of the Noble Metals,Prog. Mat. Sci., 10, p 1–78 (1963)

    Google Scholar 

Cited References (Massalski)

  1. W. C. Giessen, Ed.,Developments in the Structural Chemistry of Alloy Phases, p 234, Plenum, New York (1969).

    Google Scholar 

  2. E. Hornbogen, The Electron Microscope Investigation of Precipitation in Aluminium-Copper Solid Solutions. III,Aluminum, 43, p 163–166 (1967) in German.

    Google Scholar 

  3. E. Hornbogen, The Electron Microscope Investigation of Precipitation in Aluminium-Copper Solid Solutions. II,Aluminium, 43, p 115–121 (1967) in German.

    Google Scholar 

  4. H. Warlimont and L. Delaey, Martensitic Transformations in Copper-Silver-and Gold-Based Alloys,Prog. Mat. Sci., 18, p 1–154 (1974).

    Article  Google Scholar 

  5. P. R. Swann and H. Warlimont, The Electron-Metallography and Crystallography of Copper-Alumium Martensites,Acta Met., 11, p 511–527 (1963).

    Article  Google Scholar 

  6. J. J. Regidor, G. Caruana and M. C. Cristina, Phases in Cupro-Al and Their Metallographic Examination,ATEF Colada., 7, p 255–234 (1974) in Spanish.

    Google Scholar 

  7. D. L. Thomas, Metastable Systems Involving β and β1 Phases in Copper-Aluminium Alloys,J. Inst. Metals, 94, p 250–254 (1966).

    Google Scholar 

  8. J. Jellison and E. P. Klier, The Cooling Transformations in the Beta Eutectoid Alloys of the Cu−Al System,Trans. Met. Soc. AIME, 233, p 1694–1702, (1965).

    Google Scholar 

  9. J. R. Moon and R. O. Garwood,J. Inst. Metals, 96, p 17 (1968).

    Google Scholar 

Additional References

  1. O. S. Bochvar and V. S. Pokhodaev, The Solubility of Copper and Cadmium in Aluminum, in M. E. Drits, Ed.,Metallovedenie Legkikh Splavov, p 88–92, Izd. Nauka, Moscow (1965) in Russian.

    Google Scholar 

  2. A. J. Bradley, The Deformed Lattices of the Copper-Aluminum Alloys (review),Mineral. Petrog. Mitt., 10, p 192–202 (1965).

    ADS  Google Scholar 

  3. Z. Nishiyama, J. Kakinoki and S. Kajiwara, Stacking Faults in the Martensite of Cu−Al Alloy,J. Phys. Soc. Jpn., 20, p 1192 (1965). (Electron diffraction patterns.)

    Article  ADS  Google Scholar 

  4. H. Warlimont, Microstructure, Crystal Structure, and Mechanical Properties of Martensite Phases in Copper Alloys,Iron and Steel Inst. (London), Special Report No. 93, p 58–67; discussion, p 68–75 (1965).

    Google Scholar 

  5. S. Westman, Refinement of the Gamma-Cu9Al4 Structure,Acta Chem. Srand., 19, p 1411–1419 (1965).

    Article  Google Scholar 

  6. S. Westman, Phase Analysis at 660°C of the Gamma Region of the Copper-Aluminum System,Acta Chem. Scand., 19, p 2369–2372 (1965).

    Article  Google Scholar 

  7. S. Murai, T. Haga and S. Hirayama, Experimental Observation of the Intermediate μ-phase in Cu−Al β Alloys,Nippon Kinzoku Gakkaishi, 30, p 1092–1098 (1966) in Japanese. (The phase formed by a peritectoid reaction around 77 at.% Cu has been variously identified as μ, γ [Hansen, Shunk, Metals Handbook], α2 [Hultgren] or X [Landolt-Börnstein].)

    Google Scholar 

  8. C. Laird and H. I. Aaronson, Mechanisms of Formation of θ and Dissolution of θ′ Precipitates in anAl-4% Cu Alloy,Acta Met., 14, p 171–185 (1966).

    Article  Google Scholar 

  9. S. Kajiwara, Stacking Fault Probabilities in Copper-Aluminum Martensite Transformed in Thin Foils,J. Phys. Soc. Jpn., 22(3), p 795 (1967).

    Article  ADS  Google Scholar 

  10. H. Sato, R. S. Toth and G. Honjo, Remarks on the Structure of Martensites in Cu−Al Alloys,Acta. Met., 15, p 1381–1396 (1967).

    Article  Google Scholar 

  11. V. D. Melikov, T. B. Begimov, A. G. Malyavka and A. A. Presnyakov, Structure of Solid Solutions based on Electronic Compounds of the γ-Brass Type, inVoprosy Obshchei i Prikladnoi Fiziki (Proc. Conf., 1st, 1967), p 54–56,Izd. Nauka Kaz. SSR, Alma-Ata USSR (1969).

    Google Scholar 

  12. T. B. Begimov, V. D. Melikov, A. A. Presnyakov and E. M. Baigulov, tructure of the γ-Region of the Copper-Aluminum System at Room Temperature,Primen. Fiz. Mekh. Anal. Issled. Mater., p 12–16 (1968).

  13. J. Brettschneider and H. Warlimont, Phase Equilibrium and Transformations in Cu−Al Alloys under High Hydrostatic Pressure,Z. Metallkunde, 59, p 740–749 (1968).

    Google Scholar 

  14. P. Duval and P. Haymann, Structure of a New Ordered Phase Obtained by Annealing β′-Martensite from Copper-Aluminum Alloys,C. R. Acad. Sci. Paris, 267B, p 388–391 (1968).

    Google Scholar 

  15. O. von Heidenstam, A. Johansson and S. Westman, A Redetermination of the Distribution of Atoms in Cu5Zn8, Cu5Cd8 and Cu9Al4,Acta Chem. Scand., 22, p 653–661 (1968).

    Article  Google Scholar 

  16. S. D. Kulkarni, Thermodynamics of Martensitic and Eutectoid Transformations in the Cu−Al System,Acta Met., 21(10), p 1461–1469 (1973).

    Article  Google Scholar 

  17. S. D. Kulkarni, Mechanism and Kinetics of Eutectoid Reaction in Cu−Al System,Acta Met., 21(11), p 1539–1546 (1973). (Model for pearlite growth.)

    Article  Google Scholar 

  18. R. Bonnet and F. Durand, Geometric Discussion of the Relationships Between the Phases Al and CuAl2 for the Eutectic and Precipitates of CuAl2, Proc. Conf. In Situ Composites. I. Solidification and Resulting Structure, p 209–223 (1973).

  19. R. H. Hopkins, Three-Dimensional Morphology of a Lamellar Spacing Perturbation in an Al−Cu Eutectic Alloy, Proc. Conf. In Situ Composites. I. Solidification and Resulting Structure, p 181–191 (1973).

  20. H. Warlimont and H. P. Aubauer, Disperse Order—A Model for the Partially Ordered State of Concentrated-Alloy Solid Solutions. I. Experimental Observations and Basic Features of the Model,Z. Metallkunde, 64(7), p 484–491 (1973) in German. (Short range ordered solid solution.)

    Google Scholar 

  21. P. Furrer and H. Warlimont, Phase Transformations in Beta-Cu−Al on Extremely Rapid Cooling from the Melt,Z. Metallkunde, 64(9), p 626–634 (1973) in German. (17.0–20.3 at.% Al, Solidification complies with equilibrium diagram.)

    Google Scholar 

  22. R. Sankaran, Kinetics of Growth of Platelike Precipitates,Acta Met., 22(8), p 957–969 (1974).

    Article  Google Scholar 

  23. Yu. M. Vainblat and P.Sh. Lantsman, Diagrams of Structural States for Hot-Worked Al Alloys,Izvest. VUZ Tsvetnaya Met., 4, p 155–160 (1974) in Russian.

    Google Scholar 

  24. T. V. Shchegoleva, Features of the Rearrangement of a Face-Centered Cubic Lattice to Those of the Al2Cu and MgZn2 Types,Phys. Met. Metallogr., 41, p 92–97 (1976) in Russian. (Transformation mechanism.)

    Google Scholar 

  25. H. Laplanche, Analogies Between Steels and Copper-Aluminium Alloys,Mat. Tech., 64(10), p 351–355 (1976) in French.

    Google Scholar 

  26. H. Laplanche, Analogies Between Steels and Cu−Al Alloys,Mat. Tech., 64(12), p 429–434 (1976) in French.

    Google Scholar 

  27. H. Laplanche, Analogies Between Steels and Cu−Al Alloys. III,Mat. Tech., 65(1–2), p 61–65 (1977) in French. (TTT curves.)

    Google Scholar 

  28. H. Laplanche, Analogies Between Steels and Cu−Al Alloys. IV,Mat. Tech., 65(5), p 243–248 (1977) in French. (Formation of martensite.)

    Google Scholar 

  29. N. Kuwano, I. Ogata, Y. Tomokiyo and T. Eguchi, Formation Process of Alpha 2-Phase in Cu−Al Alloys,Trans. Jpn. Inst. Met., 18(3), p 195–203 (1977).

    Google Scholar 

  30. W. Gust, B. Predel and K.-J. Stenzel Calorimetric Studies to Determine the Specific Boundary Surface Enthalpy of the Phase Boundaries of the Eutectoid Composition Alloys Cu−24.0 At% Al and Cu−20.15 At% In,Acta Met., 27(1), p 117–121 (1979) in German.

    Article  Google Scholar 

  31. S. Kiss, I.Z. Harangozo and F.J. Kedves, Solubility Study of Cu in Al Using Zener Relaxation,Phys. Stat. Solidi (a), 33(2), p K107-K109 (1976). (0–5 at.%Cu.) See Fig. 7.

    Article  Google Scholar 

  32. T. Kojima, K. Kuribayashi and M. Doyama, Studies of Martensitic Transformation in Cu−Al Alloys by Positron Annihilation,Appl. Phys., 12(2), p 179–181 (1977).

    Article  ADS  Google Scholar 

  33. H. Goldenstein and I.G.S. Falleiros, Transformation Reactions During Tempering of Beta Prime Martensite in Cu−Al, XXXII Congresso Anual da Assoc. Brasileira de Metais, Sao Paulo, 14 p (1977) in Portuguese.

  34. F. dHeurle, Deposition by Evaporation of Cu−Al Alloy Films,Vacuum, 27(4), p 321–327 (1977).

    Article  Google Scholar 

  35. E. Schürmann and H. Löblich, Phase Boundaries and Interlamellar Spacing in Solidification of the Eutectic System Al−CuAl2,Metall., 31, p 610–614 (1977) in German. See Fig. 8a and 8b.

    Google Scholar 

  36. L. Arnberg and S. Westman, Crystal Perfection in a Non-Centrosymmetric Alloy: Refinement and Test of Twinning of the γ-Cu9Al4 Structure,Acta Crystallogr., 34a, p 399–404 (1978).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

work done while on leave at NBS; bibligraphy through 1979

An erratum to this article is available at http://dx.doi.org/10.1007/BF02881167.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massalski, T.B. The Al−Cu (Aluminum-Copper) system. Bulletin of Alloy Phase Diagrams 1, 27–33 (1980). https://doi.org/10.1007/BF02883281

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02883281

Keywords

Navigation