Skip to main content
Log in

FEM solutions for plane stress mode-I and mode-II cracks in strain gradient plasticity

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

The strain gradient plasticity theory is used to investigate the crack-tip field in a power law hardening material. Numerical solutions are presented for plane-stress mode I and mode II cracks under small scale yielding conditions. A comparison is made with the existing asymptotic fields. It is found that the size of the dominance zone for the near-tip asymptotic field, recently obtained by Chen et al., is on the order 5% of the intrinsic material lengthI. Remote from the dominance zone, the computed stress field tends to be the classical HRR field. Within the plastic zone only force-stress dominated solution is found for either mode I or mode II crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fleck. N. A., Muller, G. M., Ashby, M. F. et al., Strain gradient plasticity: Theory and experiment, Acta Metal Mater., 1994, 42(4): 475.

    Article  Google Scholar 

  2. Stolken, J. S., Evans, A. G., A microbend test method for measuring the plasticity length scale, Harvard University Report Mech 320, Division of Engineering and Applied Sciences, Cambridge: Harvard University, 1997.

    Google Scholar 

  3. Fleck, N. A., Hutchinson, J. W., A phenomenological theory for strain gradient effects in plasticity, J. Mech. Phys. Solids, 1993, 41(12): 1825.

    Article  MATH  MathSciNet  Google Scholar 

  4. Nye, J. F., Some geometrical relations in dislocated crystals, Acta Metal., 1953, 1: 153.

    Article  Google Scholar 

  5. Mindlin, R. D., Tiersten, H. F., Effects of couple-stresses in linear elasticity, Archs. Ration Mech. Analysis. 1962, 11(5): 415.

    Article  MATH  MathSciNet  Google Scholar 

  6. Mindlin, R. D., Micro-structure in linear elasticity, Archs. Ration Mech. Analysis, 1964, 16(1): 51.

    MATH  MathSciNet  Google Scholar 

  7. Toupin, R. A., Theories of elasticity with couple-stress, Archs. Ration Mech. Analysis, 1964, 17(2): 85.

    MATH  MathSciNet  Google Scholar 

  8. Husng, Y., Gao, H., Hwang, K. C., Strain-gradient plasticity at the micron scale, in Progress in Mechanical Behavior of Materials (eds. Ellyin, F., Provan, J. W.), Victoria: Fleming Printing Ltd., 1999, 3: 1051.

    Google Scholar 

  9. Xia, Z. C., Hutchinson, J. W., Crack tip fields in strain gradient plasticity, J. Mech. Phys. Solids, 1996, 44(10): 1621.

    Article  Google Scholar 

  10. Huang, Y., Zhang, L., Guo, T. F. et al., Near-tip fields for cracks in materials with strain-gradient effects, IUTAM Symposium on Nonlinear Analysis of Fracture (ed. Willis, J. R.), Dordrecht: Kluwer Academic Publishers, 1997, 231–243.

    Google Scholar 

  11. Huang, Y., Zhang, L., Guo, T. F. et al., Mixed mode near-tip fields for cracks in materials with strain-gradient effects, J. Mech. Phys. Solids, 1997, 45(3): 439.

    Article  MATH  Google Scholar 

  12. Huang, Y., Zhang, L., Guo, T. F. et al., Fracture of materials with strain gradient effects, Advance in Fracture Research (ICF9), 1997, 5: 2275.

    Google Scholar 

  13. Hutchinson, J. W., Singular behavior at the end of a tensile crack in a hardening material, J. Mech. Phys. Solids, 1968, 16 (1): 13.

    Article  MATH  Google Scholar 

  14. Rice, J. R., Rosengren, G. F., Plane strain deformation near a crack in a power law hardening material, J. Meeh. Phys. Solids, 1968, 16(1): 1.

    Article  MATH  Google Scholar 

  15. Chen, J. Y., Huang, Y., Hwang, K. C., Mode I and mode II plane-stress near-tip fields for cracks in materials with strain-gradient effects, Key Engineering Materials, 1997, 145-149: 19.

    Article  Google Scholar 

  16. Herrmann, L. R., Mixed finite elements for couple-stress analysis, Hybrid and Mixed Element Methods (eds. Atluri, S. N., Gallaghter, R. H., Zienkiewicz, O. C.), New York: John Wiley & Sons, Lid., 1983, 1–17.

    Google Scholar 

  17. Taylor, G. I., Plastic strain in metals, J. Inst. Metals, 1938, 62: 307.

    Google Scholar 

  18. Kocks, U. F., The relation between polycrystal deformation and single crystal deformation, Metall. Trans., 1970, 1(5): 1121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Kezhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, X., Guo, T., Huang, K. et al. FEM solutions for plane stress mode-I and mode-II cracks in strain gradient plasticity. Sci. China Ser. A-Math. 43, 969–979 (2000). https://doi.org/10.1007/BF02879803

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02879803

Keyword

Navigation