Skip to main content
Log in

Bioengineering problems connected with the use of conventional and unconventional raw materials in fermentation

A review

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Some bioengineering problems connected with the use of conventional and unconventional raw materials in fermentation research and industry are reviewed. They include the effect of the physical state of different substrates (solid, liquid, gaseous) and considerations of physico-chemical processes, especially the identification of limiting steps. A new concept of classification of fermentors with respect to the macromixing properties is suggested and its applicability for different substrates is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiba S., Humphrey A. E., Millis N. F.:Biochemical Engineering, 2nd Ed., Academic Press, New York, 1973, p. 208.

    Google Scholar 

  • Ajinomoto Co. Ltd.: Procédé de preparation de produits de fermentation. French Pat. 1 654 216 (1969).

  • Akin C, Delente J. J., Lueckerath E., Kozihoshi E. A., Krahee E.: A bioengineering approach to beer fermentation. Presented at 154th Nat. Meet. Amer. Chem. Soc., Chicago, Sept. 11–14, paper No. Q18, 1967.

  • Akita K., Yoshida F.: Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble columns.Ind. Eng. Ghent., Process Des. Devel. 13, 84 (1974).

    Article  CAS  Google Scholar 

  • Ault R. G., Hampton A. N., Newton R., Roberts R. H.: Biological and biochemical aspects of tower fermentation.J. Inst. Brew. 75, 260 (1969).

    CAS  Google Scholar 

  • Aunický Z., Štros F., Zábojník R.: Fermentation equipment of Vogelbusch-type. (In Czech.)Kvasny Prům. 17, 128 (1971).

    Google Scholar 

  • Bellamy N. D.: Single cell protein from cellulosic wastes.Biotechnol. Bioeng. 16, 869 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Brown D. E.: Aeration in the submerged culture of micro-organisms. In:Methods in Microbiology, vol. 2, Norris J. R. and Ribbons D. W. (Eds.), Academic Press, New York 1970, p. 125.

    Google Scholar 

  • Brunauer S., Emmett P. H., Teller E. J.: Adsorption of gases in multimolecular layers.J. Amer. Chem. Soc. 60, 309 (1938).

    Article  CAS  Google Scholar 

  • Callihan C. D., Dunlap E. E.: Construction of a chemical-microbial pilot plant for production of single cell protein from cellulosic wastes. U.S. EPA Rept. N. SW-24C, 1971.

  • Dalicher H.-H., Kroetzsch P., Popp K. H., Stickel R.: Die Strahldüsenbegasung eine Möglichkeit zur Belüftung biologischer Kläranlagen.Chem.-Ing. Technik 46, 337 (1974).

    Article  Google Scholar 

  • Hattori K. Yokoo S., Imada O.: Scale-up of glutamic acid fermentation from hydrocarbons.J. Ferment. Technol. (Japan)52, 132 (1974).

    CAS  Google Scholar 

  • Hesseltine C. W.: Solid state fermentations.Biotechnol. Bioeng. 14, 517 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Humprrey A. E., Erickson L. E.: Kinetics of growth on aqueous-oil and aqueous-solid dispersed systems.J. Appl. Chem. Biotechnol. 22, 125 (1972).

    Article  Google Scholar 

  • Jagusch L., Püschel S., Schieferdecker K., Schuster H., Meyer F.: A method of handling liquids through the action of gases. Czechoslov. Pat. 149 588 (1972). (In Czech.)

  • Kobayashi T., Van Dedem G., Moo-Young M.: Oxygen transfer into mycelial pellets.Biotechnol. Bioeng. 15, 27 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Kotyk A., Janáček K.:Cell Membrane Transport. Plenum Press, 2nd etition, New York, 1975.

    Google Scholar 

  • Kvasnička J.: Fermentor, expecially for mass production of protein (In Czech) Czechoslov. Pat. 136 438 (1969).

  • Kvasnička J.: Equipment for homogenization of liquids and gas with intensification of gas transfer into a liquid. (In Czech) Czechoslov. Pat. 148 540 (1972).

  • Lee S. S., Jaokman A. P., Sohroeder E. D.: Role of flocculation in transient microbial growth. Presented at 75th Nat. Meet, Amer. Inst. Chem. Engrs., June 3.–6., 1973, Detroit, Mich., paper No. 24c.

  • Lefrancois L., Mariller C. G., Mejane J. V.: Efectionnements aux procédés de cultures fongiques et de fermentations industrielles. French. Pat. 1 102 200 (1955).

  • Levenspiel O.:Chemical Reaction Engineering. J. Wiley, New York, 1962.

    Google Scholar 

  • Means C. W., Savage G. M., Reusser F., Koepsell H. J.: Design and operation of a pilot-plant fermentor for the continuous propagation of filamentous microorganisms.Biotechnol. Bioeng. 4, 5 (1962).

    Article  CAS  Google Scholar 

  • Mimura A., Watanabe S., Takeda I.: Biochemical engineering analysis of hydrocarbon fermentation. (III) Analysis of emulsification phenomena.J. Ferment. Technol. (Japan) 49, 255 (1971).

    CAS  Google Scholar 

  • Nesemann G., Dimmling W.: Technische Anwendung mikrobieller Verfahren.Chem. Zeit 98, 523 (1974).

    CAS  Google Scholar 

  • Panuschka G.: Test results obtained by a model high efficiency-bioreactor 40 m3 contents — with deep jet aeration — for fermentation. Proc. 4th Internat. Symp. on Yeasts, Pt I, H. Klaushofer and U. B. Sleytr (Eds.), Hochschülerschaft Hochsch. Bodenkultur, Wien, 1974, p. 127.

    Google Scholar 

  • Porter J. R.: Microbiology and the food and energy crises.Amer. Soc. Microbiol. News 40, 813 (1974).

    Google Scholar 

  • Prokop A., Eriokson L. E., Fernandez J., Humphrey A. E.: Design and physical characteristic of a multistage, continuous tower fermentor.Biotechnol. Bioeng. 11, 945 (1969).

    Article  Google Scholar 

  • Ross L. W., Updegraff D. M.: Kinetics of diffusion-coupled fermentation processess. The conversion of cellulose to protein.Biotechnol. Bioeng. 13, 99 (1971).

    Article  CAS  Google Scholar 

  • Rushton J. H., Costich E. W., Everett H. J.: Power characteristics of mixing impellers. Part 2.Chem. Eng. Progr. 46, 467 (1950).

    CAS  Google Scholar 

  • Soholler H., Seidel M.: U.S. Pat. 2 198 192 (1940).

  • Schultz J. S., Gerhardt P.: Dialysis culture of microorganisms: design, theory, and results.Bacteriol. Rews. 33, 1 (1969).

    CAS  Google Scholar 

  • Silverman M. P., Ehrlich H. L.: Microbial formation and degradation of minerals. In:Advances in Applied Microbiology, vol. 6, D. Perlman (Ed.), Academic Press, New York, 1964, p. 153.

    Google Scholar 

  • Štěrbáček Z., Šáohová M.: Non-ideal flow phenomena in tubular fermentation systems — fundamentals, and influence on equipment design.Pure Appl. Chem. 36, 365 (1973).

    Google Scholar 

  • Takamine J.: Proces of making diastatic enzyme. U.S. Pat. 525 823 (1894).

  • Tone M., Kitai A., Ozaki A.: A new method for removal of inhibitory fermentation products.Biotechnol. Bioeng. 10, 689 (1968).

    Article  CAS  Google Scholar 

  • Torma A. E., Walden C. C., Branion R. M. R.: Microbiological leaching of a zinc sulfite concentrate.Biotechnol. Bioeng. 12, 601 (1970).

    Article  Google Scholar 

  • Tsao G. T.: Simultaneous gas-liquid interfaoial oxygen absorption and biochemical oxidation.Biotechnol. Bioeng. 10, 765 (1968).

    Article  CAS  Google Scholar 

  • Weinstein B., Treybal R. E.: Liquid-liquid contacting in unbaffed agitation vessels.Amer. Inst. Chem. Engs. J. 19, 304 (1973).

    CAS  Google Scholar 

  • Wingard Jr. L. B., Ed.: Enzyme Engineering, Biotechnol. Bioeng. Symp. No. 3, Interscience Publsh. New York, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokop, A., Voteuba, J. Bioengineering problems connected with the use of conventional and unconventional raw materials in fermentation. Folia Microbiol 21, 58–69 (1976). https://doi.org/10.1007/BF02879008

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02879008

Keywords

Navigation