Skip to main content
Log in

Chromosome structure in relation to the chromosome cycle

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literature Cited

  1. Abraham, A. Chromosome structure and the mechanics of mitosis and meiosis. Ann. Bot.3: 546–568. 1939.

    Google Scholar 

  2. Aisima, T. Studies of mitosis and meiosis in comparison. II. Chromosome structure in the spiral stage and anaphase in mitosis as revealed by means of a maceration method. Cytologia11: 429–435. 1941.

    Google Scholar 

  3. Alexander, J. andBridges, C. B. Some physico-chemical aspects of life, mutation and evolution. Colloid Chemistry, Vol. II. 1928. P. 9–58.

  4. Ardenne, M. v. Die Keilschnittmethode, ein Weg zur Herstellung von Mikrotomschmitten mit weniger als 10−3 mm Stärke für elektronenmikroskopische Zwecke. Zeit. Wiss. Mikr.56: 8–23. 1939.

    Google Scholar 

  5. — Die Keilschliffmethode, ein Weg zur Herstellung von Objektschichten. Zeit. Wiss. Mikr.57: 291–297. 1940.

    Google Scholar 

  6. Astbury, W. T. X-ray studies of protein structure. Cold Spring Harbor Symp. Quant. Biol.2: 15–27. 1934.

    CAS  Google Scholar 

  7. — andBell, F. O. Some recent developments in the X-ray study of proteins and related structures. Cold Spring Harbor Symp. Quant. Biol.6: 109–121. 1938.

    CAS  Google Scholar 

  8. Atwood, S. The last premeiotic mitosis and its relation to meiosis inGaillardia. Proc. Nat. Acad. Sci.23: 1–5. 1937.

    PubMed  CAS  Google Scholar 

  9. Auerbach, C. Chemically induced mosaicism inDrosophila melanogaster. Proc. Royal Soc., Edinb., B,62: 211–222. 1946.

    Google Scholar 

  10. Barber, H. N. The suppression of meiosis and the origin of diplochromosomes. Proc. Royal Soc. London, B,128: 170–185. 1940.

    Google Scholar 

  11. Barber, H. C. andCallan, H. G. Distribution of nucleic acid in the cell. Nature153: 109. 1944.

    Google Scholar 

  12. Barigozzi, C. Esperienze di microdissezione sui cromosomi delle ghiandole salivari di Chironomus sp. Arch. Exp. Zellf.22: 190–195. 1938.

    Google Scholar 

  13. Bauer, H. Structure and arrangement of salivary gland chromosome inDrosophila species. Proc. Nat. Acad. Sci.22: 216–222. 1936.

    PubMed  CAS  Google Scholar 

  14. Becker, W. A. Struktur und Doppelbrechung der Chromosomen. Arch. Exp. Zellf.22: 196–201. 1938.

    Google Scholar 

  15. Belling, J. The ultimate chromomeres ofLilium andAloe with regard to the number of genes. Univ. Cal. Publ. Bot.14: 307–318. 1928.

    Google Scholar 

  16. — Chromomeres of liliaceous plants. Univ. Cal. Publ. Bot.16: 153–170. 1931.

    Google Scholar 

  17. Bennett, A. H. Phase-difference microscopy for transparent objects. Anat. Rec.89: 547. 1944.

    Google Scholar 

  18. et al. Phase microscopy. Trans. Am. Micr. Soc.65: 99–131. 1946.

    CAS  Google Scholar 

  19. Berger, C. A. Prophase pairing in somatic cells with multiple chromosome complexes. Genetics23: 140. 1938.

    Google Scholar 

  20. — Multiplication and reduction of somatic chromosome groups as a regular developmental process in the mosquito,Culex pipiens. Carnegie Inst. Wash., Publ.496: 209–232. 1938.

    Google Scholar 

  21. — Prophase chromosome behavior in the division of cells with multiple chromosome complexes. Jour. Hered.29: 351–357. 1938.

    Google Scholar 

  22. — Multiple chromosome complexes in animals and polysomaty in plants. Cold Spring Harbor Symp. Quant. Biol.9: 19–21. 1941.

    Google Scholar 

  23. et al. The cytological effects of benzene vapor. Bull. Torrey Bot. Club71: 620–623. 1944.

    Google Scholar 

  24. Bhaduri, P. N. Root-tip smear technique and the differential staining of the nucleolus. Jour. Royal Micr. Soc.58: 120–124. 1938.

    Google Scholar 

  25. — Improved smear methods for rapid double staining. Jour. Royal Micr. Soc.60: 1–7. 1940.

    Google Scholar 

  26. — Rapid smear methods with nucleolar stains. Chron. Bot.6: 319. 1941.

    Google Scholar 

  27. — Cytological analysis of structural hybridity inRhoeo discolor Hance. Jour. Genetics44: 73–85. 1942.

    Google Scholar 

  28. Bhatia, G. S. Cytology and genetics of some Indian wheats. Ann. Bot.2: 335–372. 1938.

    Google Scholar 

  29. Brachet, J. Remarques sur la formation de l’acide thymonucléique pendant le développement des oeufs à synthese partielle. Arch. Biol.48: 529–548. 1937.

    CAS  Google Scholar 

  30. — La localisation de l’acide thymonucléique pendant l’oogenese et la maturation chez les amphibiens. Arch. Biol.51: 151–165. 1940.

    CAS  Google Scholar 

  31. — Étude histochemique des proteines au cours du développement embryonnaire des Poissons, des Amphibiens et des Oiseaux. Arch. Biol.51: 167–202. 1940.

    CAS  Google Scholar 

  32. -. Embryologie Chimique. Paris.

  33. — La specificité de la reaction de Feulgen pour la détection de l’acide thymonucléique. Expérientia2: 142–143. 1946.

    CAS  Google Scholar 

  34. Brandt, K. M. Physiologische Chemie und Cytologie der Presshefe, ein Sammelbericht und neue Untersuchungen im ultravioletten Licht und an gefärbtem Material. Protoplasma36: 77–117. 1941.

    CAS  Google Scholar 

  35. Buck, J. B. Growth and development of the salivary gland chromosomes inSciara. Proc. Nat. Acad. Sci.23: 423–428. 1937.

    PubMed  CAS  Google Scholar 

  36. — Micromanipulation of salivary gland chromosomes. Jour. Hered.33: 3–10. 1942.

    Google Scholar 

  37. — andMelland, A. M. Methods for isolating, collecting and orienting salivary gland chromosomes for diffraction analysis. Jour. Hered.33: 173–184. 1942.

    Google Scholar 

  38. Burch, C. R. and Stock, J. P. P. Phase-contrast microscopy. Jour. Sci. Instruments19: 71–75. 1942.

    Google Scholar 

  39. Callan, H. G. Heterochromatin inTriton. Proc. Royal Soc. London, B,130: 324–335. 1942.

    CAS  Google Scholar 

  40. — Distribution of nucleic acid in the cell. Nature152: 503. 1943.

    CAS  Google Scholar 

  41. Camara, A. da. Beitrage zur Kenntnis des Spiralbaues der Chromosomen. Zeit. Ind. Abst. Ver.74: 202–215. 1938.

    Google Scholar 

  42. Carlson, J. G. The intergeneric homology of an atypical euchromosome in several closely related Acridinae (order Orthoptera). Jour. Morph.59: 123–161. 1936.

    Google Scholar 

  43. — Some effects of X-radiation on the neuroblast chromosomes of the grasshopperChortophaga viridifasciata. Genetics23: 596–609. 1938.

    PubMed  CAS  Google Scholar 

  44. — Effects of X-radiation on grasshopper chromosomes. Cold Spring Harbor Symp. Quant. Biol.9: 104–111. 1941.

    Google Scholar 

  45. Carothers, E. Components of the mitotic spindle with special reference to the chromosomal and interzonal fibers in Acrididae. Biol. Bull.71: 469–491. 1936.

    Google Scholar 

  46. Carr, J. G. Mechanism of the Feulgen reaction. Nature156: 143–144. 1945.

    CAS  Google Scholar 

  47. Caspersson, T. Über den chemischen Aufbau den Strukturen des Zellkernes. Skand. Arch. Physiol.73, Suppl. 8: 1–151. 1936.

    Google Scholar 

  48. — Studies on the nucleic acid metabolism during the cell cycle. Arch. Exp. Zellf.22: 655–657. 1939.

    Google Scholar 

  49. — Über die Rolle der Desoxyribosenukleinsäure bei der Zellteilung. Chromosoma1: 147–156. 1939.

    CAS  Google Scholar 

  50. -. On the role of the nucleic acids in the cell. Proc. 7th Int. Genet Cong. 1939. 85–86.

  51. — Methods for the determination of the absorption spectra of cell structure. Jour. Micr. Soc.60: 8–25. 1940.

    CAS  Google Scholar 

  52. — Die Eiweissverteilung in den Strukturen des Zellkernes. Chromosoma1: 562–604. 1940.

    CAS  Google Scholar 

  53. — Nukleinsäurekette und Genvermehrung. Chromosoma1: 605–619. 1940.

    CAS  Google Scholar 

  54. — Studien über den Eiweissumsatz der Zelle. Naturwiss.29: 33–43. 1941.

    CAS  Google Scholar 

  55. — Einiges über optische Anisotropie und Feinbau von Chromatin und Chromosomen. Chromosoma2: 247–250. 1941.

    Google Scholar 

  56. — Chromosomin and nucleic acids. Nature153: 499–500. 1944.

    CAS  Google Scholar 

  57. — andBrandt, K. Nucleotidumsatz und Wachstum bei Presshefe. Protoplasma35: 507–526. 1941.

    Google Scholar 

  58. — andSchultz, J. Nucleic acid metabolism of the chromosomes in relation to gene reproduction. Nature142: 294–295. 1938.

    CAS  Google Scholar 

  59. —— Pentose nucleotides in the cytoplasm of growing tissues. Nature143: 602–603. 1939.

    CAS  Google Scholar 

  60. —— Ribonucleic acids in both nucleus and cytoplasm, and the function of the nucleolus. Proc. Nat Acad. Sci.26: 507–515. 1940.

    PubMed  CAS  Google Scholar 

  61. — andThorell, B. Localization of the adenyl nucleotides in striated muscle fibers. Naturwiss.29: 363–364. 1941.

    CAS  Google Scholar 

  62. —— Der endozellulare Eiweiss- und Nucleinsäurestoffwechsel in embryonalem Gewebe. Chromosoma2: 132–154. 1941.

    Google Scholar 

  63. Catcheside, D. G. Effects of ionizing radiations on chromosomes. Biol. Rev.20: 14–28. 1945.

    Google Scholar 

  64. — andLea, D. E. The effect of ionization distribution on chromosome breakage by X-rays. Jour. Genet45: 186–196. 1943.

    Google Scholar 

  65. —— The rate of induction of dominant lethals inDrosophila melanogaster sperm by X-rays. Jour. Genet47: 1–9. 1945.

    Google Scholar 

  66. Chambers, R. andSands, H. A dissection of the chromosomes in the pollen mother cells ofTradescantia virginica L. Jour. Gen. Physiol.5: 815–819. 1923.

    Google Scholar 

  67. Choudhuri, H. C. Chemical nature of chromosomes. Nature152: 475. 1943.

    CAS  Google Scholar 

  68. Clark, G. L. et al. A study of lampbrush chromosomes by the electron microscope. Science95: 250. 1942.

    PubMed  Google Scholar 

  69. Claude, A. andFullam, E. F. An electron microscope study of isolated mitochondria. Jour. Exp. Med.81: 51–62. 1945.

    Google Scholar 

  70. —— The preparation of sections of guinea pig liver for electron microscopy. Jour. Exp. Med.83: 499–504. 1946.

    Google Scholar 

  71. — andPotter, J. S. Isolation of chromatin threads from the resting nucleus of leukemic cells. Jour. Exp. Med.77: 345–354. 1943.

    CAS  Google Scholar 

  72. Cleveland, L. R. Longitudinal and transverse division in two closely related flagellates. Biol. Bull.74: 1–40. 1938.

    Google Scholar 

  73. Cohen, S. S. The enzymatic degradation of thymus nucleohistone. Jour. Biol. Chem.158: 255–264. 1945.

    CAS  Google Scholar 

  74. Cole, P. andSutton, E. The absorption of ultraviolet radiation by bands of the salivary gland chromosomes ofD. melanogaster. Cold Spring Harbor Symp. Quant Biol.9: 66–71. 1941.

    Google Scholar 

  75. Coleman, L. C. The structure of homotypic and somatic chromosomes. Am. Jour. Bot27: 683–686. 1940.

    Google Scholar 

  76. — The cytology ofVeltheimia viridifolia Jacq. Am. Jour. Bot27: 887–895. 1940.

    Google Scholar 

  77. — The relation of chromocenters to the differential segments inRhoeo discolor Hance. Am. Jour. Bot.28: 742–748. 1941.

    Google Scholar 

  78. — Chromosome structure in the Acrididae with special reference to the X chromosome. Genetics28: 2–8. 1943.

    PubMed  CAS  Google Scholar 

  79. — andHillary, B. B. The minor coil in meiotic chromosomes and associated phenomena as revealed by the Feulgen technique. Am. Jour. Bot.28: 464–469. 1941.

    Google Scholar 

  80. Creighton, M. Chromosome structure inAmblystoma punctatum. Cytologia8: 497–504. 1938.

    Google Scholar 

  81. Csik, L. andKoller, P. C. Relational coiling and chiasma frequency. Chromosoma1: 191–196. 1939.

    Google Scholar 

  82. D’Angelo, E. G. Micrurgical studies onChironomus salivary gland chromosomes. Biol. Bull.90: 71–87. 1946.

    Google Scholar 

  83. Danielli, J. F. Establishment of cytochemical techniques. Nature157: 755–757. 1946;158: 129–130. 1946.

    Google Scholar 

  84. Darlington, C. D. The internal mechanics of the chromosomes. I. The nuclear cycle inFritillaria. II. Prophase pairing at meiosis inFritillaria. III. Relational coiling and crossing over inFritillaria. Proc. Royal Soc. London, B,118: 33–96. 1935.

    Google Scholar 

  85. — The internal mechanics of the chromosomes. V. Relational coiling of chromatids at mitosis. Cytologia7: 248–255. 1936.

    Google Scholar 

  86. — Crossing-over and its mechanical relationships inChorthippus andStauroderus. Jour. Genet.33: 465–500. 1936.

    Google Scholar 

  87. -. Recent advances in cytology. 2nd Ed. 1–671. 1937.

  88. — Misdivision and the genetics of the centromere. Jour. Genet.37: 341–364. 1939.

    Google Scholar 

  89. — The genetical and mechanical properties of the sex chromosomes. V. Cimex and the Heteroptera. Jour. Genet.39: 101–137. 1939.

    Google Scholar 

  90. — The origin of iso-chromosomes. Jour. Genet.39: 351–361. 1940.

    Google Scholar 

  91. — Polyploidy, crossing-over and heterochromatin inParis. Ann. Bot.5: 203–216. 1941.

    Google Scholar 

  92. — Chromosome chemistry and gene action. Nature149: 66–69. 1942.

    CAS  Google Scholar 

  93. — andJanaki-Ammal. Adaptive isochromosomes inNicandra. Ann. Bot.9: 267–281. 1945.

    Google Scholar 

  94. - and -. Chromosome atlas of cultivated plants. 1946.

  95. — andLa Cour, L. Differential reactivity of the chromosomes. Ann. Bot.2: 615–625. 1938.

    Google Scholar 

  96. —— Nucleic acid starvation of chromosomes inTrillium. Jour. Genet.40: 185–213. 1940.

    Google Scholar 

  97. —— The detection of inert genes. Jour. Hered.32: 115–121. 1941.

    Google Scholar 

  98. —— Chromosome breakage and the nucleic acid cycle. Jour. Genet46: 180–267. 1945.

    Google Scholar 

  99. —— Nucleic acid and the beginning of meiosis. Nature157: 875–876. 1946.

    CAS  Google Scholar 

  100. — andThomas, P. T. Morbid mitosis and the activity of inert chromosomes in sorghum. Proc. Royal Soc., B,130: 127–150. 1941.

    Google Scholar 

  101. — andUpcott, M. The measurement of packing and contraction in chromosomes. Chromosoma1: 23–32. 1939.

    Google Scholar 

  102. —— The activity of inert genes inZea mays. Jour. Genet.41: 275–296. 1941.

    Google Scholar 

  103. Delrbück, M. Radiation and the hereditary mechanism. Am. Nat.74: 350–362. 1940.

    Google Scholar 

  104. Dermen, H. Chromosome complex at premeiotic anaphase and meiotic metaphase. Jour. Arn. Arb.17: 42–46. 1936.

    Google Scholar 

  105. Dobzhansky, Th. Translocations involving the second and the fourth chromosomes ofD. melanogaster. Genetics16: 629–658. 1931.

    PubMed  CAS  Google Scholar 

  106. — Distribution of heterochromatin in the chromosomes ofDrosophila pallidipennis. Am. Nat.78: 193–213. 1944.

    Google Scholar 

  107. Dodson, E. O. Some evidence for the specificity of the Feulgen reaction. Stain Tech.21: 103–105. 1946.

    Google Scholar 

  108. Dounce, A. L. Enzyme studies on isolated cell nuclei of rat liver. Jour. Biol. Chem.147: 685–698. 1943.

    CAS  Google Scholar 

  109. Doutreligne, J. Les divers “types” de structure nucleaire et de mitose somatique. La Cellule48: 189–212. 1939.

    Google Scholar 

  110. Duryee, W. R. Isolation of nuclei and non-mitotic chromosome pairs from frog eggs. Arch. Exp. Zellf.19: 171–176. 1937.

    Google Scholar 

  111. — A microdissection study of amphibian chromosomes. Biol. Bull.75: 345. 1938.

    Google Scholar 

  112. — Comparative effects of X-radiation on isolated and nonisolated nuclei. Anat. Rec.75: (Suppl.) 144. 1939.

    Google Scholar 

  113. -. The chromosomes of the Amphibian nucleus. Univ. Penn. Bicent. Conf. 129–141. 1941.

  114. Ehrenberg, L. Influence of temperature on the nucleolus and its coacervate nature. Hereditas32: 407–418. 1946.

    Google Scholar 

  115. Elvers, I. An electron-microscopic study of chromosomes and cytoplasm in Lilium. Ark. Bot.30B: 1–8. 1942.

    Google Scholar 

  116. — On an application of the electron microscope to plant cytology. Acta Horti Bergiani13: 149–245. 1943.

    Google Scholar 

  117. Fano, U. Production of ion clusters by X-rays. Nature151: 698. 1943.

    CAS  Google Scholar 

  118. Fernandes, A. Les satellites chez les Narcisses. II. Les satellites pendant la mitose. Bot. Soc. Broteriana11: 87–146. 1936.

    Google Scholar 

  119. — Sur le comportement d’un chromosome surnuméraire pendant la mitose. Sci. Genet.1: 141–167. 1939.

    Google Scholar 

  120. — Sur le comportement des chromosomes surnuméraires hétérochromatiques pendant la méiose. Bol. Soc. Broteriana20: 93–155. 1946.

    Google Scholar 

  121. — andSerra, J. A. Euchromatine et heterochromatine dans leurs Tapports avec le noyau et le nucleole. Bol. Soc. Broteriana19: 67–125. 1944.

    Google Scholar 

  122. Feulgen, R. andRossenbeck, H. Mikroskopisch-chemischer Nachweis einer Nucleinsaure. Zeit. Physiol. Chem.135: 203–248. 1924.

    CAS  Google Scholar 

  123. Frankel, O. H. The nucleolar cycle in some species ofFritillaria. Cytologia8: 37–47. 1937.

    Google Scholar 

  124. Frey-Wyssling, A. Submikroskopische Morphologie des Protoplasmus und seiner Derivate. Protoplasmamonographien15: 1–317. 1938.

    Google Scholar 

  125. Frolova, S. L. Structure and form of the salivary gland chromosomes inDrosophila. Biol. Zhurnal6: 645–664. 1937.

    Google Scholar 

  126. — Chromosome structure after removal of thymonucleic acid by action of enzymes. Compt Rend. Acad. Sci. URSS30: 459–462. 1941.

    CAS  Google Scholar 

  127. — Fine chromosome structure after enzyme action (nuclease and pepsin). Compt. Rend. Acad. Sci. URSS32: 654–657. 1941.

    CAS  Google Scholar 

  128. — Study of fine chromosome structure under enzyme treatment. Jour. Hered.35: 235–246. 1944.

    CAS  Google Scholar 

  129. Fullam, E. F. andGessler, A. E. A high speed microtome for the electron microscope. Rev. Sci. Instr.17: 23–35. 1946.

    Google Scholar 

  130. Garber, E. Spontaneous alterations of chromosome morphology inNothoscordum fragrans. Am. Jour. Bot.31: 161–165. 1944.

    Google Scholar 

  131. Gates, R. R. Double structure of chromosomes. Nature140: 1013. 1937.

    Google Scholar 

  132. — The structure of the chromosome. Jour. Royal Micr. Soc.58: 97–111. 1938.

    Google Scholar 

  133. — Nucleoli and related nuclear structures. Bot Rev.8: 337–409. 1942.

    Google Scholar 

  134. — andMensinkai, S. V. Double structure of chromosomes. Nature141: 607. 1938.

    Google Scholar 

  135. Gay, H. andKaufmann, B. P. A rapid method for demonstrating mammalian somatic mitoses. [In manuscript.]

  136. Geitler, L. Der feinere Bau der Chromosomen von Crepis. Zeit. Zellf. Mikr. Anat.10: 195–200. 1929.

    Google Scholar 

  137. — Der Spiralbau somatischer Chromosomen. Zeit. Zellf. Mikr. Anat.23: 514–521. 1935.

    Google Scholar 

  138. — Über das Wachstum von Chromozentrenkernen und zweierlei Heterochromatin bei Blütenpflanzen. Zeit Zellf. Mikr. Anat.28: 133–153. 1938.

    Google Scholar 

  139. — Weitere Untersuchungen über den Spiralbau somatischer Chromosomen. Zeit. Zellf. Mikr. Anat.28: 305–309. 1938.

    Google Scholar 

  140. — Chromosomenbau. Protoplasmamonographien14: 1–190. 1938.

    Google Scholar 

  141. — Das Heterochromatin der Geschlechtschromosomen bei Hemipteren. Chromosoma1: 197–230. 1939.

    Google Scholar 

  142. — Temperaturbedingte Ausbildung von Spezialsegmenten an Chromosomenenden. Chromosoma1: 554–561. 1940.

    Google Scholar 

  143. — Neue Ergebnisse und Probleme auf dem Gebeit des Chromosomenbaues. Naturwiss.28: 649–656. 1940.

    CAS  Google Scholar 

  144. — Über eine postmeiotische Teilungsanomalie und den Spiralbau der Chromosomen vonParis quadrifolia. Chromosoma2: 519–530. 1943.

    Google Scholar 

  145. Gessler, A. E. andFullam, E. F. Sectioning for the electron microscope accomplished by the high speed microtome. Am. Jour. Anat.78: 245–279. 1946.

    Google Scholar 

  146. Giles, N. H., Jr. The effect of fast neutrons on the chromosomes of Tradescantia. Proc. Nat. Acad. Sci.26: 567–575. 1940.

    PubMed  CAS  Google Scholar 

  147. — Comparative studies of the cytogenetical effects of neutrons and X-rays. Genetics28: 398–418. 1943.

    PubMed  CAS  Google Scholar 

  148. — A pericentric inversion inGasteria resulting in apparent iso-chromosomes at meiosis. Proc. Nat. Acad. Sci.30: 1–5. 1944.

    PubMed  CAS  Google Scholar 

  149. Goldschmidt, R. andKodani, M. The structure of the salivary gland chromosomes and its meaning. Am. Nat76: 529–551. 1942.

    Google Scholar 

  150. Greenstein, J. P. Nucleoproteins. Advances in protein chemistry. Vol.1: 210–287. 1944.

    Google Scholar 

  151. Grell, M. Cytological studies inCulex. I. Somatic reduction divisions. Genetics31: 60–76. 1946.

    PubMed  CAS  Google Scholar 

  152. — Cytological studies inCulex. II. Diploid and meiotic divisions. Genetics31: 77–94. 1946.

    PubMed  CAS  Google Scholar 

  153. Gulick, A. What are the genes? I. The genetic and evolutionary picture. II. The physico-chemical picture; Conclusions. Quart. Rev. Biol.13: 1–18; 140–168. 1938.

    Google Scholar 

  154. — The chemistry of the chromosomes. Bot. Rev.7: 433–457. 1941.

    CAS  Google Scholar 

  155. Hakansson, A. Die Meiosis bei verschiedenen Mutanten vonGodetia Whitneyi. Lunds Univ. Arsskrift, N. F. Avd. 2,36: 3–37. 1940.

    Google Scholar 

  156. — Die Meiosis bei haploiden pflanzen vonGodetia Whitneyi. Hereditas26: 411–429. 1940.

    Google Scholar 

  157. — Überzählige Chromosomen in einer Rasse vonGodetia nutans Hiorth. Bot. Not.1: 1–19. 1945.

    Google Scholar 

  158. — andLevan, A. Nucleolar conditions inPisum. Hereditas28: 426–440. 1942.

    Google Scholar 

  159. Heilborn, O. Further contributions to a chromomere analysis ofLilium. Hereditas26: 100–106. 1940.

    Google Scholar 

  160. Heitz, E. Chromosomenstruktur und Gene. Zeit. Ind. Abst. Ver.70: 402–447. 1935.

    Google Scholar 

  161. Helwig, E. R. Multiple chromosomes inPhilocleon anomalus (Orthoptera: Acrididae). Jour. Morph.69: 317–325. 1941.

    Google Scholar 

  162. Hinton, T. A. comparative study of certain heterochromatic regions in the mitotic and salivary gland chromosomes ofDrosophila melanogaster. Genetics27: 119–127. 1942.

    PubMed  CAS  Google Scholar 

  163. — The structure of the bands of salivary-gland chromosomes. Jour. Hered.37: 99–102. 1946.

    Google Scholar 

  164. Hirschler, J. Osmiumschwärzung perichromosomaler Membranen in den Spermatocyten der Rhynchoten-ArtPalomena viridissima Poder. Naturwiss.30: 105–106. 1942.

    Google Scholar 

  165. Hughes-Schrader, S. The chromosome cycle ofPhenacoccus (Coccidae). Biol. Bull.69: 462–468. 1935.

    Google Scholar 

  166. — The meiotic chromosomes of the maleLlaveiella taenechina Morrison (Coccidae) and the question of the tertiary split Biol. Bull.78: 312–337. 1940.

    Google Scholar 

  167. — The chromosomes ofNautococcus schraderae Vays, and the meiotic division figure of male llaveiine coccids. Jour. Morph.70: 261–299. 1942.

    Google Scholar 

  168. — andRis, H. The diffuse spindle attachment of coccids, verified by the mitotic behaviour of induced chromosome fragments. Jour. Exp. Zool.87: 429–456. 1941.

    Google Scholar 

  169. Huskins, C. L. The internal structure of chromosomes—A statement of opinion. Cytologia, Fujii Jub. Vol.: 1015–1022. 1937.

  170. — The coiling of chromonemata. Cold Spring Harbor Symp. Quant. Biol.9: 13–18. 1941.

    Google Scholar 

  171. -. Structural differentiation of the nucleus. Repr. from “The structure of protoplasm.” 109–126. 1942.

  172. — andSmith, S. G. Meiotic chromosome structure inTrillium erectum. Ann. Bot.49: 119–150. 1935.

    Google Scholar 

  173. — andWilson, G. B. Probable causes of the changes in direction of the major spiral inTrillium erectum L. Ann. Bot.2: 281–292. 1938.

    Google Scholar 

  174. Husted, L. An analysis of chromosome structure and behavior with the aid of X-ray induced rearrangements. Genetics21: 537–553. 1936.

    PubMed  CAS  Google Scholar 

  175. — Relational coiling inTradescantia, Allium andVicia faba. Cytologia8: 368–376. 1938.

    Google Scholar 

  176. Iwata, J. Studies on chromosome structure. I. Spiral structure of chromosomes inTrillium Smallii Maxim. Jap. Jour. Bot.10: 365–373. 1940.

    Google Scholar 

  177. — Studies on chromosome structure. II. The attachment chromomeres in the meiotic chromosomes. Jap. Jour. Bot.10: 375–382. 1940.

    Google Scholar 

  178. Janaki-Ammal, E. K. Chromosome diminution in a plant. Nature146: 839–840. 1940.

    Google Scholar 

  179. Kakhidze, N. T. Some structural details ofCrepis capillaris chromosomes. Compt. Rend. Acad. Sci. URSS,22: 439–440. 1939.

    Google Scholar 

  180. — Chromomere structure of mitotic chromosomes in wheats. Compt. Rend. (Doklady) Acad. Sci. URSS,26: 468–470. 1940.

    Google Scholar 

  181. Katterman, G. Ein neuer Koryotyp bei Roggen. Chromosoma1: 284–299. 1939.

    Google Scholar 

  182. Kaufmann, B. P. Chromosome structure and its relation to the chromosome cycle. I. Somatic mitosis inTradescantia pilosa. Am. Jour. Bot.13: 59–80. 1926.

    Google Scholar 

  183. — Chromonemata in somatic and meiotic mitoses. Am. Nat.65: 280–282. 1931.

    Google Scholar 

  184. — Somatic mitoses ofDrosophila melanogaster. Jour. Morph.56: 125–155. 1934.

    Google Scholar 

  185. — Chromosome structure in relation to the chromosome cycle. Bot. Rev.2: 529–553. 1936.

    Google Scholar 

  186. -. Morphology of the chromosomes ofDrosophila ananasse. Cytologia, Fujii Jub. Vol.: 1043–1055. 1937.

  187. — Distribution of induced breaks along the X-chromosome ofD. melanogaster. Proc. Nat. Acad. Sci.25: 571–577. 1939.

    PubMed  CAS  Google Scholar 

  188. — Induced chromosomal breaks in Drosophila. Cold Spring Harbor Symp. Quant. Biol.9: 82–90. 1941.

    Google Scholar 

  189. — The time interval between X-radiation of sperm ofDrosophila and chromosome recombination. Proc. Nat. Acad. Sci.27: 18–24. 1941.

    PubMed  CAS  Google Scholar 

  190. — Reversion from roughest to wild type inDrosophila melanogaster. Genetics27: 537–549. 1942.

    PubMed  CAS  Google Scholar 

  191. — Cytology. Carnegie Inst. Washington, Year Book43: 115–120. 1944.

    Google Scholar 

  192. — Organization of the chromosome. I. Break distribution and chromosome recombination inDrosophila melanogaster. Jour. Exp. Zool.102: 293–320. 1946.

    Google Scholar 

  193. Klingstedt, H. Taxonomic and cytological studies on grasshopper hybrids. I. Morphology and spermatogenesis ofChorthippus bicolor Charp. ×Ch. biguttulus L. Jour. Genet.37: 389–420. 1939.

    Google Scholar 

  194. — Negative heterochromacy in Orthopteran chromosomes. Mem. Soc. Fauna et Flora Fenn.17: 166–175. 1941.

    Google Scholar 

  195. Kodani, M. The structure of the salivary gland chromosomes ofD. melanogaster. Jour. Hered.32: 146–156. 1941.

    Google Scholar 

  196. — The structure of salivary gland chromosomes ofD. melanogaster. Jour. Hered.33: 115–133. 1942.

    Google Scholar 

  197. Köhler, A. andLoos, W. Das Phasenkontrastverfahren und seine Anwendungen in der Mikroskopie. Naturwiss.29: 49–61. 1941.

    Google Scholar 

  198. Koller, P. C. Asynapsis inPisum sativum. Jour. Genet.36: 275–306. 1938.

    Google Scholar 

  199. Koller, P. C. The genetical and mechanical properties of the sex chromosomes. IV. The golden hamster. Jour. Genet.36: 177–195. 1938.

    Google Scholar 

  200. Koltzoff, N. K. The structure of the chromosomes and their participation in cell-metabolism. Biol. Zhurnal7: 1–43. 1938.

    Google Scholar 

  201. Koshy, T. K. Chromosome studies inAllium. II. The tneiotic chromosomes. Jour. Royal Micr. Soc.54: 104–120. 1934.

    Google Scholar 

  202. — Number and behavior of chromosomes inAloe literalis. Ann. Bot.1: 43–58. 1937.

    Google Scholar 

  203. Kostoff, D. A contribution to the chromosome structure and behavior. La Cellule47: 219–225. 1938.

    Google Scholar 

  204. — Further studies upon the chromosome structure and behavior. La Cellule48: 179–186. 1939.

    Google Scholar 

  205. — andArutiunian, N. Heterochromatic (inert) regions in the chromosomes ofCrepis capillaris. Nature141: 514–515. 1938.

    Google Scholar 

  206. Kuwada, Y. Behavior of chromonemata in mitosis. V. A probable method of formation of the double-coiled chromonema spirals and the origin of coiling of the chromonemata into spirals. Cytologia6: 308–313. 1935.

    Google Scholar 

  207. -. The hydration and dehydration phenomena in mitosis. Cytologia, Fujii Jub. Vol.: 389–402. 1937.

  208. Kuwada, Y.. Behaviour of chromonemata in mitosis. VII. A chromosome study by the artificial uncoiling method of the chromonema spirals. Cytologia9: 17–22. 1938.

    Google Scholar 

  209. — Chromosome structure. A critical review. Cytologia10: 213–256. 1939.

    Google Scholar 

  210. — andNakamura, T. Behavior of chromonemata in mitosis. IV. Double refraction of chromosomes inTradescantia reflexa. Cytologia6: 78–86. 1934.

    Google Scholar 

  211. —— Behavior of chromonemata in mitosis. VI. Metaphasic and anaphasic longitudinal split of chromosomes in the homotype division of pollen mother cells inTradescantia reflexa. Cytologia6: 314–319. 1935.

    Google Scholar 

  212. —— Behaviour of chromonemata in mitosis. VIII. The major spirals in diakinesis. Cytologia9: 28–34. 1938.

    Google Scholar 

  213. —— Behaviour of chromonemata in mitosis. IX. On the configurations assumed by the spiralized chromonemata. Cytologia10: 492–515. 1940.

    Google Scholar 

  214. et al. The hydration and dehydration phenomena in mitosis. II. A consideration of the spiral stage with the results of experiments and observation. Cytologia9: 393–406. 1939.

    Google Scholar 

  215. et al. Artificial uncoiling of the chromonema spirals as a method of investigation of the chromosome structure. Zeit. Wiss. Mikr.55: 8–16. 1938.

    Google Scholar 

  216. Lea, D. E. andCatcheside, D. G. The mechanism of the induction by radiation of chromosome aberrations in Tradescantia. Jour. Genet.44: 216–245. 1942.

    Google Scholar 

  217. Lesley, M. M. The relation between satellite size and nucleolus size in three races ofSolanum lycopersicum. Genetics23: 485–493. 1938.

    PubMed  CAS  Google Scholar 

  218. Levan, A. The cytology ofAllium amplectens and the occurrence in nature of its asynapsis. Hereditas26: 353–394. 1940.

    Google Scholar 

  219. — Studies on the meiotic mechanism of haploid rye. Hereditas28: 177–211. 1942.

    Google Scholar 

  220. — Notes on the cytology ofDipcadi andBellevalia. Hereditas30: 217–224. 1944.

    Google Scholar 

  221. — Cytological reactions induced by inorganic salt solutions. Nature156: 751–752. 1945.

    CAS  Google Scholar 

  222. — Heterochromaty in chromosomes during their contraction phase. Hereditas32: 449–468. 1946.

    Google Scholar 

  223. Longley, A. E. Morphological characters of teosinte chromosomes. Jour. Agr. Res.54: 835–862. 1937.

    Google Scholar 

  224. — Chromosomes of maize from North American Indians. Jour. Agr. Res.56: 177–196. 1938.

    Google Scholar 

  225. — Knob positions on corn chromosomes. Jour. Agr. Res.59: 475–490. 1939.

    Google Scholar 

  226. — Chromosome morphology in maize and its relatives. Bot. Rev.7: 263–289. 1941.

    Google Scholar 

  227. — Knob positions on teosinte chromosomes. Jour. Agr. Res.62: 401–413. 1941.

    Google Scholar 

  228. Loofbourow, J. R. Borderland problems in biology and physics. Rev. Mod. Phys.12: 267–358. 1940.

    CAS  Google Scholar 

  229. Loos, W. Das Phasenkontrastverfahren nach Zernike als biologisches Forschungsmittel. Klin. Wschr.20: 849–853. 1941.

    Google Scholar 

  230. McClintock, B. Cytological observations of deficiencies involving known genes, translocations and an inversion inZea mays. Mo. Agr. Exp. Sta., Bull.163: 1–30. 1931.

    Google Scholar 

  231. — The association of non-homologous parts of chromosomes at mid-prophase of meiosis inZea mays. Zeit. Zellf.19: 191–237. 1933.

    Google Scholar 

  232. — The relation of a particular chromosomal element to the development of the nucleoli inZea mays. Zeit. Zellf. Mikr. Anat.21: 294–328. 1934.

    Google Scholar 

  233. — Spontaneous alterations in chromosome size and form inZea mays. Cold Spring Harbor Symp. Quant. Biol.9: 72–80. 1941.

    Google Scholar 

  234. MacKnight, R. H. The chemical constitution of chromosomes. The Collecting Net15: 171. 1940.

    Google Scholar 

  235. Marino, S. The spiral structure of chromosomes in the meiotic divisions ofPodisma (Orthoptera). Jour. Fac. Sci., Hokkaido Imp. Univ., Ser. VI, No.1: 29–40. 1936.

    Google Scholar 

  236. Manton, I. Evidence on spiral structure and chromosome pairing inOsmunda regalis L. Phil. Trans. Royal Soc. London, B,230: 179–216. 1939.

    Google Scholar 

  237. — Demonstration of the telophase split inTodea. Nature150: 547. 1942.

    Google Scholar 

  238. — The telophase split inTodea. Nature150: 736. 1942.

    Google Scholar 

  239. — New evidence on the telophase split inTodea barbara. Am. Jour. Bot.32: 342–348. 1945.

    Google Scholar 

  240. — Chromosome length of the early meiotic prophases inOsmunda. Ann. Bot9: 155–178. 1945.

    Google Scholar 

  241. — andSmiles, J. Observations on the spiral structure of somatic chromosomes inOsmunda with the aid of ultraviolet light. Ann. Bot.7: 195–212. 1943.

    Google Scholar 

  242. Marshak, A. The structure of somatic chromosomes. Jour. Hered.27: 459–463. 1936.

    Google Scholar 

  243. — The nature of chromosome division and the duration of the nuclear cycle. Proc. Nat. Acad. Sci.25: 502–510. 1939.

    PubMed  CAS  Google Scholar 

  244. — andWalker, A. C. Effect of liver fractions on mitosis in regenerating liver. Am. Jour. Physiol.143: 226–234. 1945.

    CAS  Google Scholar 

  245. Mather, K. The experimental determination of the time of chromosome doubling. Proc. Royal Soc. London, B,124: 97–106. 1937.

    Google Scholar 

  246. — The genetical activity of heterochromatin. Proc. Royal Soc. London, B,132: 308–332. 1944.

    Google Scholar 

  247. Matsuura, H. Chromosome studies inTrillium kamtschaticum Pall. III. The mode of chromatid disjunction at the first meiotic metaphase of the PMC. Cytologia8: 142–177. 1937.

    Google Scholar 

  248. — Chromosome studies inTrillium kamtschaticum Pall. IV. Further studies on the direction of coiling of the chromonema within the first meiotic chromosomes. Cytologia8: 178–194. 1937.

    Google Scholar 

  249. — Chromosome studies inTrillium kamtschaticum Pall. V. Abnormal meiotic divisions due to high temperature. Cytologia, Fujii Jub. Vol.1: 20–33. 1937.

    Google Scholar 

  250. — Chromosome studies inTrillium kamtschaticum Pall. VI. On the nucleolus-chromosome relationship. Cytologia9: 55–77. 1938.

    Google Scholar 

  251. — Chromosome studies inTrillium kamtschaticum Pall. XI. A simple new method for the demonstration of spiral structure in chromosomes. Cytologia9: 243–248. 1938.

    Google Scholar 

  252. — Chromosome studies inTrillium kamtschaticum Pall. XII. The mechanism of crossing-over. Cytologia10: 390–405. 1940.

    Google Scholar 

  253. — Chromosome studies inTrillium kamtschaticum Pall. XIII. The structure and behavior of the kinetochore. Cytologia11: 369–379. 1941.

    Google Scholar 

  254. — Chromosome studies inTrillium kamtschaticum Pall. XV. A contribution to the present status of knowledge on the mechanism of chromonema coiling. Cytologia11: 407–428. 1941.

    Google Scholar 

  255. — andHaga, T. Chromosome studies onTrillium kamtschaticum Pall. VIII. On the mitosis-meiosis relationship. Cytologia10: 382–389. 1940.

    Google Scholar 

  256. Meyer, D. T. andGulick, A. The nature of the proteins of cellular nuclei. Jour. Biol. Chem.146: 433–440. 1942.

    Google Scholar 

  257. Mazia, D. Enzyme studies on chromosomes. Cold Spring Harbor Symp. Quant. Biol.9: 40–46. 1941.

    CAS  Google Scholar 

  258. — andJaeger, L. Nuclease action, protease action and histochemical tests on salivary chromosomes ofDrosophila. Proc. Nat Acad. Sci.25: 456–461. 1939.

    PubMed  CAS  Google Scholar 

  259. Melland, A. M. Types of development of polytene chromosomes. Proc. Royal Soc. Edinburgh, B,61: 316–327. 1942.

    Google Scholar 

  260. Mensinkai, S. W. Cytological studies in the genusGladiolus. Cytologia10: 59–72. 1939.

    Google Scholar 

  261. Metz, C. W. The role of the “chromosome sheath” in mitosis, and its possible relation to phenomena of mutation. Proc. Nat. Acad. Sci.20: 159–163. 1934.

    PubMed  CAS  Google Scholar 

  262. — Factors influencing chromosome movements in mitosis. Cytologia7: 219–231. 1936.

    Google Scholar 

  263. — andLawrence, E. G. Studies on the organization of the giant gland chromosomes of Diptera. Quart. Rev. Biol.12: 135–151. 1937.

    Google Scholar 

  264. Michel, K. Die Darstellung von Chromosomen mittels des Phasenkontrastverfahrens. Naturwiss.29: 61–62. 1941.

    Google Scholar 

  265. Mickey, G. H. The presence of multiple strands in chromosomes ofRomalea (Orthoptera). Am. Nat.80: 446–452. 1946.

    Google Scholar 

  266. Mirsky, A. E. Chromosomes and nucleoproteins.In Recent Advances in Enzymology, Vol.3: 1–34. 1943.

    CAS  Google Scholar 

  267. — andPollister, A. W. Nucleoproteins of cell nuclei. Proc. Nat. Acad. Sci.28: 344–352. 1942.

    PubMed  CAS  Google Scholar 

  268. —— Studies on the chemistry of chromatin. Trans. N. Y. Acad. Sci., II,5: 190–198. 1943.

    CAS  Google Scholar 

  269. —— andRis, H. The chemical composition of chromosomes. Genetics31: 224. 1946.

    CAS  Google Scholar 

  270. Morgan, D. T., Jr. The formation of chromocenters in interkinetic nuclei of maize. Jour. Hered.34: 195–198. 1943.

    Google Scholar 

  271. Morgan, T. H. et al. The constitution of the germinal material in relation to heredity. Carnegie Inst. Wash., Year Book37: 304–309. 1938.

    Google Scholar 

  272. Muller, H. J. An analysis of the process of structural changes in chromosomes of Drosophila. Jour. Genet.40: 1–66. 1940.

    Google Scholar 

  273. — Resume and perspective of the symposium on genes and chromosomes. Cold Spring Harbor Symp. Quant. Biol.9: 290–308. 1941.

    Google Scholar 

  274. Müntzing, A. Genetical effects of duplicated fragment chromosomes in rye. Hereditas29: 91–112. 1943.

    Google Scholar 

  275. — Cytological studies of extra fragment chromosomes in rye. I. Iso-fragments produced by misdivision. Hereditas30: 231–248. 1944.

    Google Scholar 

  276. — Cytological studies of extra fragment chromosomes in rye. II. Transmission and multiplication of standard fragments and isofragments. Hereditas31: 457–477. 1945.

    Google Scholar 

  277. — Cytological studies of extra fragment chromosomes in rye. III. The mechanism of non-disjunction at the pollen mitosis. Hereditas32: 97–119. 1946.

    Google Scholar 

  278. Naithani, S. P. Chromosome studies inHyacinthus orientalis L. I. The somatic chromosomes. Ann. Bot1: 129–146. 1937.

    Google Scholar 

  279. — Chromosome studies inHyacinthus orientalis L. II. The meiotic chromosomes. Ann. Bot1: 257–276. 1937.

    Google Scholar 

  280. Nakamura, T. Double refraction of the chromosomes in paraffin sections. Cytologia, Fujii Jub. Vol.1: 482–493. 1937.

    Google Scholar 

  281. Nebel, B. R. Chromosome structure. X. An X-ray experiment. Genetics21: 605–614. 1936.

    CAS  Google Scholar 

  282. — Chromosome structure. XII. Further radiation experiments withTradescantia. Am. Jour. Bot24: 365–372. 1937.

    Google Scholar 

  283. — Chromosome structure. Bot. Rev.5: 563–626. 1939.

    Google Scholar 

  284. — Chromosome structure. On coiling in chromosomes. Am. Nat73: 289–299. 1939.

    Google Scholar 

  285. — Structure ofTradescantia andTrillium chromosomes with particular emphasis on number of chromonemata. Cold Spring Harbor Symp. Quant. Biol.9: 7–12. 1941.

    Google Scholar 

  286. — andRuttle, M. L. Chromosome structure. IX.Tradescantia reflexa andTrillium erectum. Am. Jour. Bot23: 652–663. 1936.

    Google Scholar 

  287. —— Chromosome structure. XIII. Meiosis inDissosteira Carolina L. Zeit. Zellf.26: 281–292. 1937.

    Google Scholar 

  288. -. Chromosome structure. The Collecting Net12: 2 pp. 1937.

  289. O’Brien, H. C. andMcKinley, G. M. New microtome and sectioning method for electron microscope. Science98: 455–456. 1943.

    PubMed  Google Scholar 

  290. Östergren, G. Colchicine mitosis, chromosome contraction, narcosis and protein chain folding. Hereditas30: 429–467. 1944.

    Google Scholar 

  291. -. Parasitic nature of extra fragment chromosomes. Bot. Not: 157–163. 1945.

  292. Östergren, G. andPrakken, R. Behaviour on the spindle of the actively mobile chromosome ends of rye. Hereditas32: 473–494. 1946.

    Google Scholar 

  293. Oura, G. A new method of unravelling chromonema spirals. Zeit Wiss. Mikr. Mikr. Tech.53: 36–37. 1936.

    Google Scholar 

  294. Painter, T. S. Recent development in our knowledge of chromosome structure and their application to genetics.In Science in Progress, 210–232. 1939.

  295. — A review of some recent studies of animal chromosomes. Royal Micr. Jour.60, III: 161–176. 1940.

    Google Scholar 

  296. — Cell growth and nucleic acids in the pollen ofRhoeo discolor. Bot. Gaz.105: 58–68. 1943.

    CAS  Google Scholar 

  297. — The effect of urea and alkali on chromosomes and the interpretative value of the dissolution images produced. Jour. Exp. Zool.96: 53–76. 1945.

    Google Scholar 

  298. — andGriffen, A. B. The structure and development of the salivary gland chromosomes ofSimulium. Genetics22: 612–633. 1937.

    PubMed  CAS  Google Scholar 

  299. — andReindorp, E. On the synthesis of cleavage chromosomes. Proc. Nat. Acad. Sci.26: 95–100. 1940.

    PubMed  CAS  Google Scholar 

  300. — andStone, W. Chromosome fusion and speciation inDrosophila. Genetics20: 327–341. 1935.

    PubMed  CAS  Google Scholar 

  301. — andTaylor, A. N. Nucleic acid storage in the toad’s egg. Proc. Nat. Acad. Sci.28: 311–317. 1942.

    PubMed  CAS  Google Scholar 

  302. Pätau, K. Sat-chromosomen und Spiralstruktur der extrakapsullaeren Koerper (Merodinium spec.) vonCollozoum inerme Muller. Cytologia, Fujii Jub. Vol.2: 667–680. 1937.

    Google Scholar 

  303. Pavan, C. Two types of heterochromatin inD. nebulosa. Proc. Nat. Acad. Sci.32: 137–145. 1946.

    PubMed  CAS  Google Scholar 

  304. Pfeiffer, H. H. Studies onChironomus chromosomes with the polarizing microscope. Nature143: 335. 1939.

    Google Scholar 

  305. — Mikrurgische Versuche in polarisierten Lichte zur Analyse des Feinbaues der Riesenchromosomen vonChironomus. Chromosoma1: 526–530. 1940.

    Google Scholar 

  306. Pollister, A. W. Centrioles and chromosomes in the atypical spermatogenesis ofVivipara. Proc. Nat. Acad. Sci.25: 189–195. 1939.

    PubMed  CAS  Google Scholar 

  307. — andMirsky, A. A cytochemical method for the localization and determination of protein in the presence of nucleic acid. Anat. Rec.94: 4. 1946.

    Google Scholar 

  308. Pontecorvo, G. Structure of heterochromatin. Nature153: 365. 1944.

    Google Scholar 

  309. Porter, K. R. et al. A study of tissue culture cells by electron microscopy. Jour. Exp. Med.81: 233–246. 1945.

    Google Scholar 

  310. Prakken, R. andMüntzing, A. A meiotic peculiarity in rye, simulating a terminal centromere. Hereditas28: 441–482. 1942.

    Google Scholar 

  311. Prokofyeva-Belgovskaya, A. A. andKhvostova, V. V. Distribution of breaks in the X-chromosome ofDrosophila melanogaster. Compt. Rend. Acad. Sci. URSS23: 270–272. 1939.

    Google Scholar 

  312. Propach, H. Die Centromeren in der Pollenkornmitose vonTradescantia gigantea Rose. Chromosoma1: 521–525. 1940.

    Google Scholar 

  313. Raghaven, T. S. Studies in the Capparidaceae. III. The prochromosomes ofPolanisia trachysperma Torr. & Gray andGynandropsis Pentaphylla DC. Cytologia8: 563–578. 1938.

    Google Scholar 

  314. Randolph, L. F. Genetic characteristics of the B-chromosome in maize. Genetics26: 608–631. 1941.

    PubMed  CAS  Google Scholar 

  315. Reisinger, E. Die cytologische Grundlage der parthenogenetischen Dioogonie. Chromosoma1: 531–553. 1940.

    Google Scholar 

  316. Resende, F. Über die Ubiquität der SAT-Chromosomen bei den Blütenpflanzen. Planta26: 757–807. 1937.

    Google Scholar 

  317. — Über das Verhalten des SAT-Fadens. Planta29: 306–313. 1939.

    Google Scholar 

  318. — Structure of chromosomes as observed in root-tips. Nature144: 481. 1939.

    Google Scholar 

  319. — Über die Chromosomenstruktur in der Mitose der Wurzelspitzen. II. SAT-Differenzierungen, Spiralbau und Chromonemata. Chromosoma1: 486–520. 1940.

    Google Scholar 

  320. — Hétérochromatine. Portug. Acte Biol. (A)1: 139–173. 1945.

    Google Scholar 

  321. et al. Sur la structure des chromosomes dans les mitoses des méristèmes radiculaires. III. L’action de la temperature sur la structure chromosomique. Portug. Acta. Biol.1: 9–46. 1944.

    Google Scholar 

  322. Rhoades, M. M. Studies of a telocentric chromosome in maize with reference to the stability of its centromere. Genetics25: 483–520. 1940.

    PubMed  CAS  Google Scholar 

  323. — andVilkomerson, H. On the anaphase movement of chromosomes. Proc. Nat. Acad. Sci.28: 433–436. 1942.

    PubMed  CAS  Google Scholar 

  324. Richards, A. G., Jr. andAnderson, T. F. Electron microscope studies of insect cuticle, with a discussion of the application of electron optics to this problem. Jour. Morph.71: 135–183. 1942.

    Google Scholar 

  325. et al. A microtome sectioning technique for electron microscopy illustrated with sections of striated muscle. Proc. Soc. Exp. Biol. & Med.51: 148–152. 1942.

    Google Scholar 

  326. et al. Electron microscope studies of squid giant nerve axoplasm. Jour. Cell. & Comp. Physiol.21: 129–143. 1943.

    Google Scholar 

  327. Richards, O. W. Phase-difference microscopy for living unstained protoplasm. Anat. Rec.89: 548. 1944.

    Google Scholar 

  328. — Phase difference microscopy. Nature154: 672. 1944.

    Google Scholar 

  329. -. Biological phase microscopy. Cold Spring Harbor Symp. Quant. Biol. 11: [In press].

  330. Riley, H. P. The effect of X-rays on the chromosomes ofTradescantia gigantea. Cytologia7: 131–142. 1936.

    Google Scholar 

  331. Ris, H. A cytological and experimental analysis of the meiotic behaviour of the univalent X chromosome in the bearberry aphidTamalia (=Phyllaphis) coweni (Ckll.). Jour. Exp. Zool.90: 267–330. 1942.

    Google Scholar 

  332. — The structure of meiotic chromosomes in the grasshopper and its bearing on the nature of “chromomeres” and “lamp-brush chromosomes”. Biol. Bull.89: 242–257. 1945.

    Google Scholar 

  333. — andCrouse, H. Structure of the salivary gland chromosomes of Diptera. Proc. Nat. Acad. Sci.31: 321–327. 1945.

    PubMed  CAS  Google Scholar 

  334. Roy, B. On the somatic chromosomes in Lathyrus. Cytologia7: 424–430. 1936.

    Google Scholar 

  335. Ruttle, M. L. andNebel, B. R. Chromosome structure. XI.Hordeum vulgare L. andSecale cereale L. Cytologia, Fujii Tub. Vol.1: 553–568. 1937.

    Google Scholar 

  336. Sax, K. Chromosome coiling in relation to meiosis and crossing over. Genetics21: 324–338. 1936.

    PubMed  CAS  Google Scholar 

  337. — An analysis of X-ray induced chromosomal aberrations inTradescantia. Genetics25: 41–67. 1940.

    PubMed  CAS  Google Scholar 

  338. — Types and frequencies of chromosomal aberrations induced by X-rays. Cold Spring Harbor Symp. Quant. Biol.9: 93–103. 1941.

    Google Scholar 

  339. — andEnzmann, E. V. The effect of temperature on X-ray induced chromosome aberrations. Proc. Nat. Acad. Sci.25: 397–405. 1939.

    PubMed  CAS  Google Scholar 

  340. — andHumphrey, L. M. Structure of meiotic chromosomes in microsporogenesis ofTradescantia. Bot. Gaz.96: 353–361. 1934.

    Google Scholar 

  341. — andMather, K. An X-ray analysis of progressive chromosome splitting. Jour. Genet.37: 483–490. 1939.

    Google Scholar 

  342. Sax, H. J. andSax, K. Chromosome structure and behavior in mitosis and meiosis. Jour. Arn. Arb.16: 423–439. 1935.

    Google Scholar 

  343. Schaede, R. Untersuchungen mit der Nuklealreaktion an Kern und Kernteilung. Planta26: 167–192. 1936.

    Google Scholar 

  344. — Anordnung und Gestalt der Chromosomen vonGaltonia candicans. Ber. Deut. Bot Ges.55: 485–492. 1937.

    Google Scholar 

  345. Schmidt, W. J. Die Doppelbrechung von Karyoplasma, Zytoplasma und Metaplasma. Protoplasm-Monographien. 1–388. 1937.

  346. — Zur Doppelbrechung der Chromosomen in den Speicheldrusenkernen der Chironomuslarven. Naturwiss.25: 506–507. 1937.

    Google Scholar 

  347. — Doppelbrechung und Röntgendiagramm der Nucleinsäure und Feinbau der Chromosomen. Naturwiss.24: 413. 1938.

    Google Scholar 

  348. — Einiges über optische Anisotropie und Feinbau von Chromatin und Chromosomen. Chromosoma2: 86–110. 1942.

    Google Scholar 

  349. Schneider, W. C. The action of ribonuclease on the succinoxidase system. Jour. Biol. Chem.164: 241–247. 1946.

    CAS  Google Scholar 

  350. Schrader, F. The chromosomes ofPseudococcus nipae. Biol. Bull.40: 259–267. 1921.

    Google Scholar 

  351. — A study of chromosomes in three species ofPseudococcus. Arch. Zellf.17: 45–62. 1923.

    Google Scholar 

  352. — Recent hypotheses on the structure of spindles in the light of certain observations in Hemiptera. Zeit. Wiss. Zool.142: 520–539. 1932.

    Google Scholar 

  353. — Notes on the mitotic behavior of long chromosomes. Cytologia6: 422–430. 1935.

    Google Scholar 

  354. — The kinetochore or spindle fibre locus inAmphiuma tridactylus. Biol. Bull.70: 484–498. 1936.

    Google Scholar 

  355. — The structure of the kinetochore at meiosis. Chromosoma1: 230–237. 1939.

    Google Scholar 

  356. -. Mitosis. 1944.

  357. — The elimination of chromosomes in the meiotic divisions ofBrachystethus rubromaculatus Dalles. Biol. Bull.90: 19–31. 1946.

    Google Scholar 

  358. Schultz, J. The evidence of the nucleoprotein nature of the gene. Cold Spring Harbor Symp. Quant. Biol.9: 55–65. 1941.

    CAS  Google Scholar 

  359. — Physiological aspects of genetics. Ann. Rev. Physiol.5: 35–62. 1943.

    Google Scholar 

  360. — The gene as a chemical unit.In Colloid Chemistry, J. Alexander, Ed., Vol.5: 819–850. 1944.

    CAS  Google Scholar 

  361. — The analysis of chromosome patterns in man. Genetics31: 228–229. 1946.

    Google Scholar 

  362. — andCaspersson, T. Heterochromatic regions and the nucleic acid metabolism of the chromosome. Arch. Exp. Zellf.22: 650–654. 1939.

    Google Scholar 

  363. et al. The genetic control of nucleolar composition. Proc. Nat. Acad. Sci.26: 515–523. 1940.

    PubMed  CAS  Google Scholar 

  364. — andCatcheside, D. G. The nature of closed X chromosomes inDrosophila melanogaster. Jour. Genet.35: 315–320. 1937.

    Google Scholar 

  365. — andJose, F. S. Differentiation of chromosomal proteins by staining techniques. Genetics30: 20–21. 1945.

    Google Scholar 

  366. Scott, F. M. Cytology and microchemistry of nuclei in developing seed ofEchinocystis macrocarpa. Bot. Gaz.105: 329–338. 1944.

    CAS  Google Scholar 

  367. Semmens, C. S. Nucleolar stain and nucleal reaction. Bot. Gaz.104: 645–649. 1943.

    Google Scholar 

  368. — andBhaduri, P. N. A technic for differential staining of nucleoli and chromosomes. Stain Tech.14: 1–5. 1939.

    Google Scholar 

  369. —— Staining the nucleolus. Stain Tech.16: 119–120. 1941.

    Google Scholar 

  370. Serra, J. A. Sur la composition protéique des chromosomes et la réaction nucléale de Feulgen. Bol. Soc. Broteriana, II,17: 203–214. 1943.

    Google Scholar 

  371. — An attempt at a synthesis of the physiological and cytological concepts of the gene. Bol. Soc. Broteriana, II,19: 327–369. 1944.

    Google Scholar 

  372. — Eine neue histochemische Reaktion, die Reaktion des Arginins. Naturwiss.32: 46. 1944.

    CAS  Google Scholar 

  373. -. Une réaction nouvelle pour l’Histochimie: la réaction pour l’arginine. Zeit. Wiss. Mikr.60 1944.

  374. — Improvements in the histochemical arginine reaction and the interpretation of this reaction. Portug. Biol.1: 1–7. 1944.

    Google Scholar 

  375. — Histochemical tests for proteins and amino acids; the characterization of basic proteins. Stain Tech.21: 5–18. 1946.

    Google Scholar 

  376. — andQueiroz Lopes, A. Direkter Nachweis und Lokalization von basischen Proteinen in den Chromosomen und im Nukleolus. Chromosoma2: 576–592. 1944.

    Google Scholar 

  377. —— Direkter Bachweis yon basischen Proteinen in den Chromosomen und im Nukleolus. Naturwiss.32: 47. 1944.

    CAS  Google Scholar 

  378. — Chemical constitution of the nucleolar inclusions in growing oocyte cells. Nature155: 792. 1945.

    CAS  Google Scholar 

  379. — Données pour une cytophysiologie du nucléole. I. L’activité nucléolaire pendant la croissance de l’oocyte chez. des Helicidae. Portug. Acta. Biol.1: 51–92. 1945.

    CAS  Google Scholar 

  380. Shigenaga, M. Artificial uncoiling of the chromonema spirals with neutral salt solution. Jap. Jour. Bot.10: 383–386. 1940.

    Google Scholar 

  381. Shinke, N. An experimental study on the structure of living nuclei in the resting stage. Cytologia, Fujii Jub. Vol.1: 449–463. 1937.

    Google Scholar 

  382. Shmargon, E. N. Analysis of the chromomere structure of mitotic chromosomes in rye. Compt. Rend. Acad. Sci. URSS,21: 259–262. 1938.

    Google Scholar 

  383. Sharp, L. W. Fundamentals of cytology. 1943.

  384. Shimakura, K. The chromonemata observed in fresh PMC ofTrillium kamtschaticum Pall. mounted with Sacharose solution. Cytologia, Fujii Jub. Vol.1: 256–261. 1937.

    Google Scholar 

  385. Signer, R. et al. Molecular shape and size of thymonucleic acid. Nature141: 122. 1938.

    CAS  Google Scholar 

  386. Slack, H. D. Chromosome numbers inCimex. Nature142: 358. 1938.

    Google Scholar 

  387. — The association of non-homologous chromosomes in Corixidae (Hemiptera-Heteroptera). Proc. Royal Soc. Edinburgh58: 192–212. 1938.

    Google Scholar 

  388. — The chromosomes ofCimex. Nature143: 78. 1939.

    Google Scholar 

  389. — Structural hybridity inCimex L. Chromosoma1: 104–118. 1939.

    Google Scholar 

  390. Smith, S. G. Polarization and progression in pairing. II. Premeiotic orientation and the initiation of pairing. Canad. Jour. Res., D,20: 221–229. 1942.

    Google Scholar 

  391. Sparrow, A. H. The structure and development of the chromosome spirals in microspores ofTrillium. Canad. Jour. Res, D,20: 257–266. 1942.

    Google Scholar 

  392. — Non-random uncoiling in heterobrachial chromosomes. Proc. Nat. Acad. Sci.28: 463–466. 1942.

    PubMed  CAS  Google Scholar 

  393. — Reduced chromonema elongation and abnormal spiralization following X-ray treatment of meiotic chromosomes. Genetics30: 23. 1945.

    Google Scholar 

  394. et al. Studies on the chromosome spiralization cycle inTrillium. Canad. Jour. Res., C,19: 323–350. 1941.

    Google Scholar 

  395. Stadler, L. J. The comparison of ultraviolet and X-ray effects on mutation. Cold Spring Harbor Symp. Quant. Biol.9: 168–177. 1941.

    Google Scholar 

  396. Stedman, E. andStedman, E. Chromosomin, a protein constituent of chromosomes. Nature152: 267–269. 1943.

    CAS  Google Scholar 

  397. —— Distribution of nucleic acid in the cell. Nature152: 503–504. 1943.

    CAS  Google Scholar 

  398. —— Probable function of histone as a regulator of mitosis. Nature152: 556–557. 1943.

    CAS  Google Scholar 

  399. —— Chromosomin and nucleic acid. Nature153: 500–502. 1944.

    CAS  Google Scholar 

  400. Stewart, R. N. andBamford, R. The chromosomes and nucleoli ofMedeola virginiana. Am. Jour. Bot.29: 301–303. 1942.

    Google Scholar 

  401. Stowell, R. E. Feulgen reaction for thymonucleic acid. Stain Tech.20: 45–58. 1945.

    CAS  Google Scholar 

  402. — The specificity of the Feulgen reaction. Stain Tech.21: 137–148. 1946.

    CAS  Google Scholar 

  403. Straub, J. Die Spiralstruktur der Chromosomen. Zeit. Bot.33: 65–128. 1938.

    Google Scholar 

  404. — Chromosomenstruktur. Naturwiss.31: 97–108. 1943.

    CAS  Google Scholar 

  405. Svärdson, G. Chromosome studies on Salmonidae. Medd. St. undersökn.-o. försöksanst. f. sötvattensfisket Nr. 23: 151 pp. 1945.

  406. Svenshnikova, I. N. New method for comparative cytological study of species. Compt. Rend. (Doklady) Acad. Sci. URSS30: 761–763. 1941.

    Google Scholar 

  407. — Analysis of nucleus development and changes of thymonucleic acid in ontogenesis. Compt. Rend. (Doklady) Acad. Sci. URSS32: 216–218. 1941.

    Google Scholar 

  408. Swanson, C. P. The effects of ultraviolet and X-ray treatment on the pollen tube chromosomes ofTradescantia. Genetics27: 491–503. 1942.

    PubMed  CAS  Google Scholar 

  409. — Meiotic coiling inTradescantia. Bot. Gaz.103: 457–474. 1942.

    Google Scholar 

  410. — Differences in meiotic coiling betweenTrillium andTradescantia. Mich. Acad. Sci., Proc.28: 133–142. 1943.

    Google Scholar 

  411. — Differential sensitivity of prophase pollen tube chromosomes to X-rays and ultraviolet radiation. Jour. Gen. Physiol.26: 485–494. 1943.

    Google Scholar 

  412. — The behavior of meiotic prophase chromosomes as revealed through the use of high temperature. Am. Jour. Bot.30: 422–428. 1943.

    Google Scholar 

  413. — X-ray and ultraviolet studies on pollen tube chromosomes. I. The effect of ultraviolet (2537 A) on X-ray-induced chromosomal aberrations. Genetics29: 61–68. 1944.

    PubMed  CAS  Google Scholar 

  414. Sze, L. C. Cytological studies on Acrididae. IV. The structure of the X-chromosome in the meiosis ofPhlaeota infumata. Jour. Morph.79: 113–121. 1946.

    Google Scholar 

  415. Takamine, N. Spiral structure of chromosomes in PMC ofHosta Sieboldiana Engl. Cytologia, Fujii Jub. Vol.1: 159–161. 1937.

    Google Scholar 

  416. Thoday, J. M. The effects of ionizing radiations on the chromosomes ofTradescantia bracteata. A comparison between neutrons and X-rays. Jour. Genet.43: 189–210. 1942.

    Google Scholar 

  417. Tiniakov, G. G. The inert regions and general morphology of the chromosomes in the salivary gland cells ofDrosophila. Biol. Zhurnal5: 753–802. 1936.

    Google Scholar 

  418. Troedsson, P. H. The behaviour of the compound sex chromosomes in the females of certain Hemiptera Heteroptera. Jour. Morph.75: 103–147. 1944.

    Google Scholar 

  419. Tschermak, R. Vergleichende und experimentelle cytologische Untersuchungen an der GattungOedogonium. Chromosoma2: 493–518. 1943.

    Google Scholar 

  420. Uber, F. M. Microincineration and ash analysis. Bot. Rev.6: 204–226. 1940.

    CAS  Google Scholar 

  421. Upcott, M. The external mechanics of the chromosomes. VI. The behaviour of the centromere at meiosis. Proc. Royal Soc., London, B,124: 336–361. 1937.

    Google Scholar 

  422. — The mechanics of mitosis in the pollen tube of Tulipa. Proc. Royal Soc., London, B,121: 207–220. 1936.

    Google Scholar 

  423. — The internal mechanics of chromosomes. VI. Relic and relational coiling in pollen-grains. Cytologia8: 398–407. 1938.

    Google Scholar 

  424. Vaarama, A. Observations concerning the meiotic and mitotic chromosomes inSagittaria sagittaria L. andS. nutans Pall. Ann. Bot. Soc. Zool. Bot. Fennicae Vanamo16: 1–28. 1941.

    Google Scholar 

  425. Warmke, H. E. Cytology of the Pacific Coast trilliums. Am. Jour. Bot.24: 376–383. 1937.

    Google Scholar 

  426. White, M. J. D. The chromosome cycle ofAscaris megalocephala. Nature137: 783. 1936.

    Google Scholar 

  427. -. The chromosomes. 1–128. 1937.

  428. — The heteropycnosis of sex chromosomes and its interpretation in terms of spiral structure. Jour. Genet.40: 67–82. 1940.

    Google Scholar 

  429. — The origin and evolution of multiple sex chromosome mechanisms. Jour. Genet.40: 303–336. 1940.

    Google Scholar 

  430. -. Nucleus, chromosomes and genes.In Cytology and Cell Physiology, 139–159. 1942.

  431. -. Animal cytology and evolution. 1–375. 1945.

  432. Wickbom, T. Cytological studies onDipnoi, Urodela, Anura andEmys. Hereditas31: 241–346. 1945.

    Google Scholar 

  433. Wilson, G. B. andBoothroyd, E. R. Studies in differential reactivity. I. The rate and degree of differentiation in the somatic chromosomes ofTrillium erectum L. Canad. Jour. Res., C,19: 400–412. 1941.

    Google Scholar 

  434. —— Temperature-induced differential contraction in the somatic chromosomes ofTrillium erectum L. Canad. Jour. Res., C,22: 105–119. 1944.

    Google Scholar 

  435. — andHuskins, C. L. Chromosome and chromonema length during meiotic coiling inTrillium erectum L. Ann. Bot.3: 257–270. 1939.

    Google Scholar 

  436. Wolcott, G. B. Cytological studies on the Hepaticae. I. Somatic mitosis inPallavicinia Lyellii. Am. Jour. Bot.24: 30–33. 1937.

    Google Scholar 

  437. — Cytological studies on the Hepaticae. II. The nucleoluschromosome inPallavicinia Lyellii. Am. Jour. Bot.26: 41–44. 1939.

    Google Scholar 

  438. Wrinch, D. M. On the molecular structure of chromosomes. Protoplasma25: 550–569. 1936.

    CAS  Google Scholar 

  439. Wu, S.-H. Cytological studies onSpironema fragrans and certain other Commelinaceae. Mich. Acad. Sci., Proc.27: 117–135. 1941.

    Google Scholar 

  440. Wyckoff, R. W. G. Some recent developments in the field of electron microscopy. Science104: 21–26. 1946.

    PubMed  Google Scholar 

  441. Zernike, F. Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung. Zeit. Tech. Physiol.16: 454–457. 1935.

    Google Scholar 

  442. Zworykin, V. K. andHillier, J. Electronic microscopy. Sci. Mo.59: 165–179. 1944.

    Google Scholar 

  443. et al. Electron microscopy in the field of bacteriology. Jour. Bact.47: 431–432. 1944.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supplement to article in The Botanical Review2: 529–553. 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufmann, B.P. Chromosome structure in relation to the chromosome cycle. Bot. Rev 14, 57–126 (1948). https://doi.org/10.1007/BF02861360

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02861360

Keywords

Navigation