Skip to main content
Log in

Screening methods for the evaluation of crop allelopathic potential

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

There is increasing interest in the development of allelopathic crop varieties for weed suppression. Allelopathic varieties are likely to be able to suppress weeds by natural exudation of bioactive allelochemicals, thereby reducing dependence upon synthetic herbicides. Screening bioassays are essential tools in identifying crop accessions with allelopathic potential. A number of crops have been screened for this allelopathic trait, and key issues in selecting and designing screening bioassays are reviewed. It is recommended that a combination of different bioassays be used in the evaluation of crop allelopathic potential. Laboratory bioassays, field testing, and chemical screening are important steps, and none of them can be precluded if conclusive evidence of crop allelopathy is to be established. More concerted efforts are needed in screening crop germplasm before the development of allelopathic varieties occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • An, M., J. E. Pratley, T. Haig &P. Jellett. 1997. Genotypic variation of plant species to the allelopathic effects of vulpia residues. Austral. J. Exp. Agric. 37: 647–660.

    Article  Google Scholar 

  • ———. 1998. Allelopathy: From concept to reality. Pp. 563–566in Proc. 9th Austral. Agron. Conf., Wagga Wagga, NSW, Australia.

    Google Scholar 

  • Ben-Hammouda, M., R. J. Kremer, H. C. Minor &M. Sarwar. 1995. A chemical basis for the differ-ential allelopathic potential of sorghum hybrids on wheat. J. Chem. Ecol. 21: 775–786.

    Article  CAS  Google Scholar 

  • Blum, U. 1996. Allelopathic interactions involving phenolic acids. J. Nematol. 28: 259–267.

    CAS  PubMed  Google Scholar 

  • —. 1999. Designing laboratory plant debris-soil bioassays: Some reflections. Pp. 17–23in Inderjit, K. M. M. Dakshini & C. L. Foy (eds.), Principles and practices in plant ecology: Allelopathic inter-actions. CRC Press, Washington, DC.

    Google Scholar 

  • — &J. Rebbeck. 1989. Inhibition and recovery of cucumber roots given multiple treatments of ferulic acid in nutrient culture. J. Chem. Ecol. 15: 917–928.

    Article  CAS  Google Scholar 

  • Chou, C. H. &C. H. Muller. 1972. Allelopathic mechanisms ofArctostaphylos glandulosa var.zacaen-sis. Amer. Midl. Naturalist 88: 324–347.

    Article  CAS  Google Scholar 

  • Copaja, S. V., H. M. Niemeyer &S. D. Wratten. 1991. Hydroxamic acid levels in Chilean and British wheat seedlings. Ann. Appl. Biol. 118: 223–227.

    Article  CAS  Google Scholar 

  • Dilday, R. H., J. Lin &W. Yan. 1994. Identification of allelopathy in the USDA-ARS rice germplasm collection. Austral. J. Exp. Agric. 34: 907–910.

    Article  Google Scholar 

  • —,W. G. Yan, K. A. K. Moldenhauer &K. A. Gravois. 1998. Allelopathic activity in rice for controlling major aquatic weeds. Pp. 7–26in M. Olofsdotter (ed.), Allelopathy in Rice. IRRI, Los Baños, Philippines.

    Google Scholar 

  • Einhellig, F. A. 1986. Mechanisms and modes of action of allelochemicals. Pp. 171–188in A. R. Put-nam & C. S. Tang (eds.), The science of allelopathy, John Wiley & Sons, New York.

    Google Scholar 

  • Elakovich, S. D. 1999. Bioassays applied to allelopathic herbaceous vascular hydrophytes. Pp. 45–56in Inderjit, K. M. M. Dakshini & C. L. Foy (eds.), Principles and practices in plant ecology: Allelo-pathic interactions. CRC Press, Washington, DC.

    Google Scholar 

  • Fay, P. K. &W. B. Duke. 1977. An assessment of allelopathic potential inAvena germplasm. Weed Sci. 25: 224–228.

    CAS  Google Scholar 

  • Foy, C. L. 1999. How to make bioassays for allelopathy more relevant to field conditions with particular reference to cropland weeds. Pp. 25–33in Inderjit, K. M. M. Dakshini & C. L. Foy (eds.), Princi-ples and practices in plant ecology: Allelopathic interactions. CRC Press, Washington, DC.

    Google Scholar 

  • Fuerst, E. P. &A. R. Putnam. 1983. Separating the competitive and allelopathic component of interfer-ence: Theoretical principles. J. Chem. Ecol. 9: 937–944.

    Article  CAS  Google Scholar 

  • Fujii, Y. 1992. The potential biological control of paddy weeds with allelopathy: Allelopathic effect of some rice varieties. Pp. 305–320in Proceedings of International Symposium on Biological Control and Integrated Management of Paddy and Aquatic Weeds in Asia, National Agricultural Research Centre of Japan, Tsukuba, Japan.

    Google Scholar 

  • Guenzi, W. D., T. M. McCalla &F. A. Norstadt. 1967. Presence and persistence of phytotoxic sub-stances in wheat, oat, corn and sorghum residues. Agron. J. 59: 163–165.

    Article  CAS  Google Scholar 

  • Hanson, A. D., P. L. Traynor, K. M. Dittz &D. A. Reicosky. 1981. Gramine in barley forage: Effects of genotypes and environment. Crop Sci. 21: 726–730.

    Article  CAS  Google Scholar 

  • Harrison, H. F. &J. K. Peterson. 1986. Allelopathic effects of sweet potatoes (Impomoea batatas) on yellow Nutsedge (Cyperus esculentus) and alfalfa (Medicago sativa). Weed Sci. 34: 623–627.

    Google Scholar 

  • Hashem, A. &S. W. Adkins. 1998. Allelopathic effects ofTriticum speltoides on two important weeds of wheat. Pl. Protection Quart. 13: 33–35.

    Google Scholar 

  • Hassan, S. M., I. R. Aidy, A. O. Bastawisi &A. E. Draz. 1998. Weed management in rice using allelo-pathic rice varieties in Egypt. Pp. 26–38in M. Olofsdotter (ed.), Allelopathy in Rice. IRRI, Los Baños, Philippines.

    Google Scholar 

  • Haugland, E. &L. O. Brandsaeter. 1996. Experiments on bioassay sensitivity in the study of allelopa-thy. J. Chem. Ecol. 22: 1845–1859.

    Article  CAS  Google Scholar 

  • Inderjit &K. M. M. Dakshini. 1995. On laboratory bioassays in allelopathy. Bot. Rev. (Lancaster) 61: 29–44.

    Article  Google Scholar 

  • ——. 1999. Bioassays for allelopathy: Interactions of soil organic and inorganic constitu-ents. Pp. 35–44in Inderjit, K. M. M. Dakshini & C. L. Foy (eds.), Principles and practices in plant ecology: Allelopathic interactions. CRC Press, Washington, DC.

    Google Scholar 

  • — &D. Del Moral. 1997. Is separating resource competition from allelopathy realistic? Bot. Rev. (Lancaster) 63: 221–230.

    Article  Google Scholar 

  • Kim, K. U. &D. H. Shin. 1998. Rice allelopathy research in Korea. Pp. 39–44in M. Olofsdotter (ed.), Allelopathy in Rice. IRRI, Los Bafios, Philippines.

    Google Scholar 

  • —— &I. J. Lee. 1999. Allelopathic potential of rice against barnyardgrass. P. 110in Book of Abstracts, Second World Congress on Allelopathy: Critical Analysis and Future Prospects, August 8–13, 1999, Thunder Bay, Ontario, Canada.

    Google Scholar 

  • Kimber, R. W. L. 1967. Phytotoxicity from plant residues, I: The influence of rotted wheat straw on seedling growth. Austral. J. Agric. Res. 18: 361–374.

    Article  Google Scholar 

  • Leather, G. R. &F. A. Einhellig. 1985. Mechanisms of allelopathic action in bioassay. Pp. 197–205in A. C. Thompson (ed.), The chemistry of allelopathy: Biological interaction among plants. Ameri-can Chemical Society Symposium Series, 268. American Chemical Society, Washington, DC.

    Google Scholar 

  • ——. 1986. Bioassays in the study of allelopathy. Pp. 133–145in A. R. Putnam & C. S. Tang (eds.), The science of allelopathy. John Wiley & Sons, New York.

    Google Scholar 

  • Liu, D. L. &J. V. Lovett. 1993. Biologically active secondary metabolites of barley: I. Developing techniques and assessing allelopathy in barley. J. Chem. Ecol. 19: 2217–2230.

    Article  CAS  Google Scholar 

  • Lovett, J. V. & A. H. C. Hoult. 1992. Gramine: The occurrence of a self-defence chemical in barley,Hordeum vulgare L. Pp. 426–429in Proc. 6th Austral. Agron. Conf. Armidale, Australia.

  • —— &O. Christen. 1994. Biologically active secondary metabolites of barley: IV. Hor-denine production by different barley lines. J. Chem. Ecol. 20: 1945–1954.

    Article  CAS  Google Scholar 

  • Maneechote, C. &P. Krasaesindhu. 1996. Allelopathic effects of some upland and wild rice genotypes in Thailand. P. 81in Abstracts of the First World Congress on Allelopathy: A Science for the Fu-ture, Cadiz, Spain.

    Google Scholar 

  • Mattice, J. D., R. H. Dilday &B. W. Skulman. 1999. Using HPLC to predict which accessions of rice will inhibit growth of barnyardgrass (Echinochloa crus-galli). P. 133in Book of Abstracts, Second World Congress on Allelopathy: Critical Analysis and Future Prospects, August 8–13,1999, Thun-der Bay, Ontario, Canada.

    Google Scholar 

  • Muller, C. H. 1969. Allelopathy as a factor in ecological process. Vegetatio 18: 348–357.

    Article  Google Scholar 

  • Navarez, D. C. & M. Olofsdotter. 1996. Relay seeding technique for screening allelopathic rice (Oryza sativa L.). Pp. 1285–1290in Proc. 2nd International Weed Control Congress, Copenhagen, Den-mark.

  • Nicol, D., S. V. Copaja, S. D. Wratten &H. M. Niemeyer. 1992. A screen of worldwide wheat culti-vars for hydroxamic acid levels and aphid antixenosis. Ann. Appl. Biol. 121: 11–18.

    Article  CAS  Google Scholar 

  • Niemeyer, H. M. 1988. Hydroxamic acid content ofTriticum species. Euphytica 37: 289–293.

    CAS  Google Scholar 

  • Nimbal, C. I., J. Pederson, C. N. Yerkes, L. A. Weston &S. C. Weiler. 1996. Phytotoxicity and distri-bution of sorgoleone in grain sorghum germplasm. J. Agric. Food Chem. 44: 1343–1347.

    Article  CAS  Google Scholar 

  • Olofsdotter, M. & D. C. Navarez. 1996. Allelopathic rice forEchinochloa crus-galli control. Pp. 1175–1181in Proc. 2nd International Weed Control Congress, Copenhagen, Denmark.

  • —— &K. Moody. 1995. Allelopathic potential in rice (Oryza sativa L.) germplasm. Ann. Appl. Biol. 127: 543–560.

    Article  Google Scholar 

  • Pederson, G. A. 1986. White clover seed germination in agar containing tall fescue leaf extracts. Crop Sci. 26: 1248–1249.

    Article  Google Scholar 

  • Peters, E. J. &A. H. B. Mohammed Zam. 1981. Allelopathic effects of tall fescue genotypes. Agron. J. 73: 56–58.

    Article  Google Scholar 

  • Pratley, J. E. 1996. Allelopathy in annual grasses. Pl. Protection Quart. 11: 213–214.

    Google Scholar 

  • Putnam, A. R. &W. B. Duke. 1974. Biological suppression of weeds: Evidence for allelopathy in ac-cessions of cucumber. Science 185: 370–372.

    Article  PubMed  CAS  Google Scholar 

  • —,J. Defrank &J. P. Barnes. 1983. Exploitation of allelopathy for weed control in annual and perennial cropping systems. J. Chem. Ecol. 9: 1001–1011.

    Article  Google Scholar 

  • Rasmussen, J. A., F. A. Einhellig &M. K. Schon. 1977. Synergistic inhibitory effects of p-coumaric and ferulic acids on germination and growth of grain sorghum. J. Chem. Ecol. 3: 197–205.

    Article  CAS  Google Scholar 

  • Rice, E. L. 1984. Allelopathy. 2d ed. Academic Press, Orlando, FL.

    Google Scholar 

  • Romeo, J. T. &J. D. Weidenhamer. 1999. Bioassays for allelopathy in terrestrial plants. Pp. 179–211in K. F. Haynes and J. G. Millar (eds.), Methods in chemical ecology. Kluwer Academic Publish-ing, Boston.

    Google Scholar 

  • Shilling, D. G. &F. Yoshikawa. 1987. A rapid seedling bioassay for the study of allelopathy. Pp. 334–342in G. Waller (ed.), Allelochemicals: Role in agriculture and forestry. American Chemical Society Symposium Series, 330. American Chemical Society, Washington, DC.

    Google Scholar 

  • Stowe, L. G. 1979. Allelopathy and its influence on the distribution of plants in an Illinois old-field. J. Ecol. 67: 1065–1085.

    Article  CAS  Google Scholar 

  • Thijs, H., J. R. Shann &J. D. Weidenhamer. 1994. The effects of phytotoxins on competitive outcome in a model system. Ecology 75: 1959–1964.

    Article  Google Scholar 

  • Wardle, D. A., K. A. Nicholson &A. Rahman. 1993. Influence of plant age on allelopathic potential of nodding thistle (Carduus nutans L.) against pasture grasses and legumes. Weed Res. 33: 69–78.

    Article  Google Scholar 

  • Weidenhamer, J. D. 1996. Distinguishing resource competition and chemical interference: Overcom-ing the methodological impasse. Agron. J. 88: 866–875.

    Article  Google Scholar 

  • —,T. C. Morton &J. T. Romeo. 1987. Solution volume and seed number: Overlooked factors in allelopathic bioassays. J. Chem. Ecol. 13: 1481–1491.

    Article  CAS  Google Scholar 

  • —,D. C. Hartnett &J. T. Romeo. 1989. Density-dependent phytotoxicity: Distinguishing re-source competition and allelopathic interference in plants. J. Appl. Ecol. 26: 613–624.

    Article  CAS  Google Scholar 

  • Williamson, G. B. 1990. Allelopathy, Koch’s postulates and the neck riddle. Pp. 143–162in J. B. Grace & D. Tilman (eds.), Perspectives on plant competition. Academic Press, New York.

    Google Scholar 

  • — &J. D. Weidenhamer. 1990. Bacterial degradation of juglone: evidence against allelopathy? J. Chem. Ecol. 16: 1739–1742.

    Article  CAS  Google Scholar 

  • Wu, H. 1999. Allelopathic potential of wheat (Triticum aestivum L.) against annual ryegrass (Lolium ri-gidum Gaud.). Ph.D. diss., Charles Sturt University, Australia.

    Google Scholar 

  • —,J. Pratley, D. Lemerle, T. Haig &B. Verbeek. 1998. Differential allelopathic potential among wheat accessions to annual ryegrass. Pp. 567–571in Proc. 9th Austral. Agron. Conf., Wagga Wagga, NSW, Australia.

    Google Scholar 

  • ————. 1999. Crop cultivars with allelopathic capability. Weed Res. 39: 171–180.

    Article  Google Scholar 

  • ————. 2000a. Laboratory screening for allelopathic potential of wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum). Austral. J. Agric. Res. 51: 259–266.

    Article  Google Scholar 

  • ————. 2000b. Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions by Equal-Compartment-Agar-Method. Austral. J. Agric. Res. 51: 937–944.

    Article  Google Scholar 

  • ———— &M. An. 2000c. Distribution and exudation of allelochemicals in wheat (Triticum aestivum L.). J. Chem. Ecol. 26: 2141–2154.

    Article  CAS  Google Scholar 

  • ————. 2000d. Allelochemicals in wheat (Triticum aestivum L.): Variation of phenolic acids in root tissues. J. Agri. Food Chem. 48: 5321–5325.

    Article  CAS  Google Scholar 

  • ————. 2001. Allelochemicals in wheat (Triticum aestivum L.): Variation of phenolic acids in shoot tissues. J. Chem. Ecol. 27: 125–135.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Pratley, J., Lemerle, D. et al. Screening methods for the evaluation of crop allelopathic potential. Bot. Rev 67, 403–415 (2001). https://doi.org/10.1007/BF02858100

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858100

Keywords

Navigation