Skip to main content
Log in

Dynamics models of soil organic carbon

  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

As the largest pool of terrestrial organic carbon, soils interact strongly with atmosphere composition, climate, and land change. Soil organic carbon dynamics in ecosystem plays a great role in global carbon cycle and global change. With development of mathematical models that simulate changes in soil organic carbon, there have been considerable advances in understanding soil organic carbon dynamics. This paper mainly reviewed the composition of soil organic matter and its influenced factors, and recommended some soil organic matter models worldwide. Based on the analyses of the developed results at home and abroad, it is suggested that future soil organic matter models should be developed toward based-process models, and not always empirical ones. The models are able to reveal their interaction between soil carbon systems, climate and land cover by technique and methods of GIS (Geographical Information System) and RS (Remote Sensing). These models should be developed at a global scale, in dynamically describing the spatial and temporal changes of soil organic matter cycle. Meanwhile, the further researches on models should be strengthen for providing theory basis and foundation in making policy of green house gas emission in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J.M., Faure, H., Faure-Denard, L.,et al. 1990. Increase in terrestrial carbon storage from last glacial maximum to the present [J]. Nature,378: 711–714.

    Article  Google Scholar 

  • Arah, J.R.M. 1996. The soil submodel of the ITE Forest and Hurley Pasture ecosystem models [C]. In: Powison, D.S., Smith, P., Smith, J.U. (Eds), Evaluation of Soil Organic Matter Models Using Existing Long-term Datasets. NATO ASI Series I, vol. 38. Springer, Heidelberg, pp. 225–230.

    Google Scholar 

  • Bolin, B., Degens, E.T., Duvigneaud, P.,et al. 1979. The global biogeochemical carbon cycle [C]. In: Bolin, B., Degens, E.T., Kempe, S., Ketner, P. (Eds.), SCOPE 13. Wiley, Chichester, UK, pp. 1–56.

    Google Scholar 

  • Bolin, B., Degens, E.T., Duvigneaud, P.,et al. 1979. The global biogeochemical carbon cycle [C]. In: Bolin, B., Degens, E.T., Kempe, S., Ketner, P. (Eds.), SCOPE 13. Wiley, Chichester, UK, pp. 1–56.

    Google Scholar 

  • Bouwman, A.F. 1990. Soils and the greenhouse effect [C]. In: Proceedings of the International Conference on soils and the Greenhouse Effect. Wiley, New York.

    Google Scholar 

  • Changsheng, Li,et al. 1997. Simulating trends in soil organic carbon in long-term experiments using the DNDC model [J]. Geoderma,81, 45–60.

    Article  Google Scholar 

  • Chemova, N.M., Byzova, Ju.B. and Uvarov, A.V. 1975. Metabolicheskaya aktivnost I zhivoi ves razichnyh pantsymyh kleshchey lesnoi podstilki [C]. In: ed. N.M. Chernova, Rol Zhivothyh v Tunktsionirovanii Ekosistem. Moscow, pp. 151–154 (in Russian).

  • Chertov, O.G. and Komarov, A.S. 1997. SOMM-a model of soil organic matter dynamics [J]. Ecol Model,94: 177–189.

    Article  CAS  Google Scholar 

  • Chertov, O.G., Komarov, A.S., Crocker, G.,et al. 1997. Simulating trends of soil organic carbon in seven long-term experiments using the SOMM model of the humus types [J]. Geoderma,81: 121–135.

    Article  Google Scholar 

  • Chertov, O.G., Komarov, A.S., Tsiplianovsky, A.V., 1999. Simulation of soil organic matter and nitrogen accumulation in Scots pine plantations of bare parent material using forest combined model EFIMOD [J]. Plant Soil,213: 31–41.

    Article  CAS  Google Scholar 

  • Clay, D.E., Clapp, C.E., Linden, D.R.,et al. 1989. Nitrogen-tillage-residue management [J]. III. Observed and simulated interactions among soil depth, nitrogen, mineralization, and corn yield. Soil Sci.,147: 319–325.

    Article  Google Scholar 

  • Clay, D.E., Clapp, C.E., Molina, J.A.E.,et al. 1985b. Nitrogen-tillage-residue management. II. Calibration of potential rate of nitrification by model simulation [J]. Soil Sci. Soc. Am. J.,49: 322–325.

    Article  CAS  Google Scholar 

  • Clay, D.E., Clapp, C.E., Molina, J.A.E.,et al. 1985a. Nitrogen-tillage-residue management. I. Simulating soil and plant behavior by the model NCSWAP [J]. Plant Soil.,84: 67–77.

    Article  CAS  Google Scholar 

  • Crossley, Jr., D.A., Coleman, D.S., Hendrix, P.F.,et al. 1991. Modern Techniques in Soil Ecology [J]. Elsevier, Amsterdam,60: 164–167.

    Google Scholar 

  • Donigan, A.S., Barnwell, T.O., Jackson, R.B.,et al. 1994. Assessment of alternative management practices and policies affecting soil carbon in agroecosystems of the central United States [R]. EPA/600/R-94/067. Environmental Research Laboratory, Athens, Ga.

    Google Scholar 

  • Dou, Z. and Fox, R.H. 1995. Using NCSWAP to simulate seasonal nitrogen dynamics in soil and corn [J]. Plant Soil,177: 235–247.

    Article  CAS  Google Scholar 

  • Eswaran, H., Vandenberg, E. and Reich, P. 1993. Organic carbon in soils of the world [J]. Soil Sci. Sco. Am. J.,57: 192–194.

    Article  Google Scholar 

  • Franko, U., Crocker, G.J., Grace, P.R.,et al. 1997. Simulating trends in soil organic carbon in long-term experiments using the CANDY model [J]. Geoderma,81: 109–120.

    Article  Google Scholar 

  • Houot, S., Cadot, L. and Molina, J.A.E., 1996. Simulation by NCSWAP of the nitrogen dynamics under crops amended with sewage sludge in two soils [C]. In: Van Cleemputet al. (Eds.), Progress in Nitrogen Cycle Studies. Kluwer, Amsterdam, pp. 413–418.

    Google Scholar 

  • Huang Yiao, Liu Shiliang, Shen Qirong,et al. 2001. Model establishment for simulating soil organic carbon dynamics [J]. Scientia Agricultura Sinica,34 (5): 465–468.

    Google Scholar 

  • Hudson, J.M., Gberini, S.A. and Goldstein, R.A. 1994. Modeling the global carbon cycle: nitrogen fertilization of the terrestrial biosphere and the “missing” CO2 sink [J]. Global Biogeochem. Cycles,8: 307–333.

    Article  CAS  Google Scholar 

  • Jabro, J.D., Jemison, J.M.Jr., Lengnick, L.L.,et al. 1995. Field validation and comparison of LEACHM and NCSWAP models for predicting nitrate leaching [C]. Proc. Int. Symp. On Water Quality Modeling, April 2–5, 1995, Orlando, Fla. American Society of Agricultural Engineering, pp. 137–147.

  • Jabro, J.D., Jemison, J.M.Jr., Lengnick, L.L.,et al. 1993. Field validation and comparison of LEACHM and NCSWAP models for predicting nitrate leaching. [J]. Trans. ASAE.,36: 1651–1657.

    Google Scholar 

  • Jenkinson, D.S. 1990. The turnover of organic carbon and nitrogen in soil, phil [J]. Trans. R.Soc. Lond. B,329: 361–368.

    Article  CAS  Google Scholar 

  • Jenkinson, D.S. and Rayner, J.H. 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments [J]. Soil Sci.,123: 298–305.

    Article  CAS  Google Scholar 

  • Jenkinson, D.S., Adams, D.E. and Wild, A. 1991. Model estimates of CO2 emissions from soil in response to global warming [J]. Nature,351: 304–306.

    Article  CAS  Google Scholar 

  • King, A.W., Post, W.M. and Wullschleger, S.D. 1997. The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2. Clim Change,35: 199–127.

    Article  CAS  Google Scholar 

  • Lai, R. 1999. Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect [J]. Prog. Environ. Sci.,1(4): 307–326.

    Google Scholar 

  • Lee, J.J., Phillips, D.L. and Liu, R. 1993. The effect of trends in tillage practices on erosion and carbon content of soils in the US Corn Belt. Water Air Soil Pollut.,70: 389–401.

    Article  CAS  Google Scholar 

  • Lengnick, L.L. and Fox, R.H. 1993a. Simulation by NCSWAP of seasonal nitrogen dynamics in corn: I. Soil nitrate [J]. Agron. J.,86: 167–175.

    Article  Google Scholar 

  • Lengnick, L.L. and Fox, R.H. 1993b. Simulation by NCSWAP of seasonal nitrogen dynamics in corn: II. Corn growth and yield [J]. Agron. J.,86: 176–182.

    Article  Google Scholar 

  • Li Zhongpei and Wang Xiaoju. 1998. Simulation of soil organic carbon dynamic after changing landuse pattern in hilly red soil region [J]. Chinese Journal of Applied Ecology,9(4): 365–370. (In Chinese)

    Google Scholar 

  • Li, C., Frolking S. and Harriss, R.C. 1994. Modeling carbon biogeochemistry in agricultural soils [J]. Global Biogeochem Cycles.8: 237–254.

    Article  CAS  Google Scholar 

  • McGuire, A.D., Melillo, J.M., Kicklighter, D.W.,et al. 1995. Equilibrium responses of soil carbon to climate change: empirical and process based estimates [J]. J. Biogeogr.,22: 785–796.

    Article  Google Scholar 

  • Metherell, A.K., Harding, L.A., Cole, C.V.,et al. 1993. CENTURY soil organic matter model environment, technical documentation [C]. Agroecosystem Version 4.0. Great Plains.

  • Molina, J.A.E., Clapp, C.E. and Larson, W.E., 1980. Potentially mineralizable nitrogen in soil: A simple exponential model does not apply for the first 12 weeks of incubation [J]. Soil Sci. Soc. Am. J.,44: 442–443.

    Article  CAS  Google Scholar 

  • Molina, J.A.E., Clapp, C.E., Shaffer, M.J.,et al. 1983. NCSOIL, a model of nitrogen and carbon transformations in soil: Description, calibration and behavior [J]. Soil Sci. Soc. Am. J.,47: 85–91.

    Article  CAS  Google Scholar 

  • Nelson, D.W., Martin, J.P. and Erwin, J.O. 1979. Decomposition of microbial cells and components in soil and their stabilization through complexing with model humic acid-type phenolic polymers [J]. Soil Sci. Soc. Am. J.,43: 84–88.

    Article  CAS  Google Scholar 

  • Parshotam, A., Tdte, K.R. and Giltrap, D.J. 1995. Potential effects of climate and land use change on soil carbon and CO2 emissions from New Zealand’s indigenous forests and unimproved grasslands [J]. Weather Clim.,15(2): 3–12.

    Google Scholar 

  • Parton, W.J., Schimel, D.S., Ojima, D.S.,et al. 1994. A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management [C]. In: Bryant R.B., Arnold R.W. (eds.), Quantitative modeling of soil forming processes. SSSA Special Publication no. 39, ASA, CSSA, SSA, Madison, Wis., pp 137–167.

    Google Scholar 

  • Parton, W.J., Schimel, D.S., Cole, C.V.,et al. 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands [J]. Soil Sci. Soc. Am. J.,51: 1173–1179.

    Article  CAS  Google Scholar 

  • Parton, W.J., Scurlock, J.M.O., Ojima, D.S.,et al. 1993. Observation and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem [J]. Cycles,7: 785–809.

    Article  CAS  Google Scholar 

  • Parton, W.J., Stewart, S.W.B. and Cole, C.V. 1988. Dynamics of carbon, nitrogen, phosphorus and sulfur in cultivated soils. A model [J]. Biogeochemistry,5: 109–131.

    Article  CAS  Google Scholar 

  • Parton, W.J., Stewart, S.W.B. and Cole, C.V. 1988. Dynamics of carbon, nitrogen, phosphorus and sulfur in cultivated soils. A model [J]. Biogeochemistry,5: 109–131.

    Article  CAS  Google Scholar 

  • Saha, S.K. and Sing, B.M. 1991. Soil Erosion Assessment and Mapping of the Aglar River Waterheld (Uttar Pradesh) using Remote Sensing techniques [J]. Jour. Ind. Soc. Rem. Sens.,19(2): 67–76.

    Google Scholar 

  • Schimel, D.S., and Parton, W.J. 1986. Microclimatic controls of nitrogen mineralization and nitrification in shortgrass steppe soils [J]. Plant Soil,93: 347–357.

    Article  Google Scholar 

  • Schimel, D.S., Braswell, B.H., Holland, E.A.,et al. 1994. Climate edaphic and biotic controls over storage and turnover of carbon in soils [J]. Global Biogeochemical Cycle,8: 279–293.

    Article  CAS  Google Scholar 

  • Sharpley, A.N., Williams, J.R. (eds). 1990a. EPIC-erosion/productivity impact calculator. 1. Model documentation[R]. USDA Technical Bulletin No. 1768, Washington, DC.

  • Sharpley, A.N., Williams, J.R. (eds). 1990b. EPIC-erosion/productivity impact calculator. 2. User manual [R]. USDA Technical Bulletin No. 1768, Washington, DC.

  • Stanford, G., Smith, S.J. 1972. Nitrogen mineralization potentials of soils [J]. Soil Sci. Soc. Am. Proc.,36: 465–472.

    Article  CAS  Google Scholar 

  • Sundquist, E. 1993. The global carbon dioxide budget [J]. Science,259: 934–941.

    CAS  Google Scholar 

  • Thornley, J.H.M. and Verberne, E.L.J. 1969. A model of nitrogen flows in grassland [J]. Plant Cell Environ,12: 863–886.

    Article  Google Scholar 

  • Van der Linden, M.M.A., Van Veen, J.A., Frissel, M.J., 1987. Modelling soil organic matter levels after long-term applications of crop residues, and farmyard and green manures [J]. Plant Soil,101: 21–28

    Article  Google Scholar 

  • Van Keulen, H. and Seligman, N.G. 1987. Simulation of Water Use, Nitrogen Nutrition and Growth of a Spring Wheat Crop [J]. PUDOC, Wageningen,99: 310–312.

    Google Scholar 

  • Van Veen, J.A. and Paul, E.A. 1981. Organic carbon dynamics in grassland soils, I. Background information and computer simulation [J]. Can. J. Soil Sci,61: 185–201.

    Article  Google Scholar 

  • Verberne, E.L.J., Hassink, J., De Willigen, P.,et al. 1990. Modelling organic matter dynamics in different soils [J]. Neth, J. Agric, Sci.,38: 221–238.

    CAS  Google Scholar 

  • Williams, J.R. and Renard, K.G. 1985. Assessment of soil erosion and crop productivity with process models (EPIC) [C]. In: Follett R.F., Stewart, B A (eds.) Soil erosion and crop productivity. ASA/CSSA/SSSA, Madison, Wis., 67–103.

    Google Scholar 

  • Wu Jinshui, Liu Shoulong and Tong Chengli. 2003. Principles in modeling the turnover of soil organic matter using computer simulation [J]. Acta pedologica sinica,40(5): 768–774.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li-xia.

Additional information

Foundation item: The research is funded by National Natural Science Foundation (40231016) and Canadian International Development Agency (CIDA).

Biography: YANG Li-xia (1976-), female, Postgraduate in Nanjing Agricultural University, Nanjing 210095, P. R. China.

Responsible editor: Zhu Hong

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li-xia, Y., Jian-jun, P. Dynamics models of soil organic carbon. Journal of Forestry Research 14, 323–330 (2003). https://doi.org/10.1007/BF02857862

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02857862

Keywords

CLC number

Document code

Navigation