Skip to main content
Log in

A model describing soil-plant-water relations for potatoes

  • Published:
American Potato Journal Aims and scope Submit manuscript

Abstract

A simple steady state model is derived which describes the diurnal water potential fluctuations in leaves and tubers of potatoes. The magnitude of these fluctuations is shown to depend on transpiration rate, hydraulic properties of the soil, rooting depth and density, resistance to flow of water within the plant, and the leaf water potential at which stomatal closure occurs. Model predictions agree quite well with measurements made in the field and in the growth chamber. The model is used to predict the lower limit of readily available moisture for potatoes and shows the important environmental and plant factors.

Resumen

Se ha derivado un modelo simple de equilibrio dinámico para describir las fluctuaciones diurnas del potencial de agua en hojas y tubérculos de papa.

La magnitud de estas fluctuaciones muestra dependencia en la tasa de transpiración, propiedades hidráulicas del suelo, profundidad y densidad de enraizamiento, resistencia al flujo del agua dentro de la planta, y el potencial de agua de la hoja al cual ocurre el cierre de los estomas. Las predicciones del modelo concuerdan bastante bien con medidas hechas en el campo y en las cámaras de crecimiento. El modelo se usa para predecir el límite más bajo de humedad facilmente disponible para papa y muestra la importancia de los factores ambientales y de la mísma planta. The relationship between soil water potential and plant transpiration rate and growth is subject to considerable influence by soil, plant, and atmospheric factors. With most irrigation systems, it is desirable to maintain the soil water potential sufficiently high to maximize growth. Much research has been conducted to determine the lower limit of available water to plants and the relative availability of water at various soil water potentials. These determinations are often confounded by the influences of transpiration, leaf osmotic potential, root density and distribution, and hydraulic conductivity of the soil. The purpose of this paper is to describe a soil-plant-water flow model which takes these factors into account and apply it to determine the optimum soil water potential for maximizing potato growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Campbell, G. S. 1974. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci 117:311–314.

    Article  Google Scholar 

  2. Campbell, G. S., and M. D. Campbell 1974. Evaluation of a thermocouple hygrometer for measuring leaf water potential in situ. Agron J 66:24–27.

    Article  Google Scholar 

  3. Campbell, M. D. 1972. The lower limit of soil water potential for potato growth. Ph.D. Thesis, Washington State University, Pullman (Univ. Microfilm order # 73-35).

    Google Scholar 

  4. Cowan, I. R. 1965. Transport of water in the soil-plant-atmosphere system. J Appl Ecol 2:221–239.

    Article  Google Scholar 

  5. Gardner, W. R. 1960. Dynamic aspects of water availability to plants. Soil Sci 89:63–73.

    Article  Google Scholar 

  6. Hillel D., and W. R. Gardner. 1969. Steady infiltration into crust-topped profiles. Soil Sci 108:137–142.

    Article  Google Scholar 

  7. Hsiao, T. C. 1973. Plant Responses to Water Stress. Annu Rev Plant Physiol 24:519–570.

    Article  CAS  Google Scholar 

  8. Klute, A. 1965. Laboratory measurement of hydraulic conductivity of unsaturated soil, p. 253–261.In C. A. Black (ed.) Methods of Soil Analysis. Part 1. Am Soc of Agron, Madison, Wisconsin.

    Google Scholar 

  9. Kunkel, R., and W. H. Gardner. 1965. Potato tuber hydration and its effect on blackspot of Russet Burbank potatoes in the Columbia Basin of Washington. Am Potato J 42:109–124.

    CAS  Google Scholar 

  10. Loftfield, J. V. G. 1921. The behavior of Stomata. Carnegie Institution of Washington (D.C.) #314.

  11. Meinel, G. 1965. The growth and water supply of individual organs of the potato.In B. Slavik (ed.), Water Stress in Plants. W. Junk Publishers, The Hague. p. 223–226.

    Google Scholar 

  12. Slatyer, R. O. 1967. Plant-Water Relationships. Academic Press, New York. 366 p.

    Google Scholar 

  13. Van Bavel, C. H. M. 1966. Potential evaporation: the combination concept and its experimental verification. Water Resour Res 2:455–467.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Scientific Paper No. 4335 College of Agriculture Research Center, Washington State University, Pullman. Work supported in part by the Washington Potato Commission.

Former N.D.E.A. Fellow

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, M.D., Campbell, G.S., Kunkel, R. et al. A model describing soil-plant-water relations for potatoes. American Potato Journal 53, 431–442 (1976). https://doi.org/10.1007/BF02852657

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02852657

Keywords

Navigation