Skip to main content
Log in

Strain induced martensite formation in stainless steel

  • Transformations
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The Conversion Electron and X-ray Mössbauer studies of the surface of Type 316 stainless steel at 400 K, 300 K, and 100 K show that both the substitutional and interstitial elements perturb the cubic symmetry at the iron site. The single peak of austenite is a superposition of at least five quadrupole split doublets whose magnitudes and intensities depend on the type and concentration of the impurity elements. However, when the surface of the stainless steel is plastically deformed, a layer of martensite about 5000 Å thick is formed on the austenite base. This layer consists of a mixture of 31 pct martensite with the rest being the original austenite. The magnetic environment of the iron in this martensite is controlled by the concentration of alloying elements, and the distribution of the hyperfine fields is determined by the number of nearest and next nearest neighbor impurity atoms. The magnetic field decreases linearly at first as the number of nearest neighbors increases and then follows a nonlinear trend for a number of nearest neighbors. The temperature dependence of the sublattice magnetization is different for each number of neighbors, and a Curie temperature has been estimated for each site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Fisher and R. J. Maciag:Handbook of Stainless Steels. McGraw-Hill: New York, NY, 1977, chs. 1–4.

    Google Scholar 

  2. J. A. Klostermann and W. G. Burgers:Acta Metall., 1964, vol. 12, pp. 355–60.

    Article  Google Scholar 

  3. U. Gonser, R. W. Grant, A. H. Muir, Jr., and H. Weidersich:Acta Metall., 1966, vol. 14, pp. 259–64.

    Article  Google Scholar 

  4. G. P. Huffmann and R. M. Fisher:J. App. Phys., 1967, vol. 38, pp. 735–42.

    Article  Google Scholar 

  5. E. E. Yurchikov, A. Z. Menshikov, and V. A. Tzurin:Proc. Conf. on Appl. of the Mössbauer Effect (Tihany), Akademia Kiado, Budapest, 1971, pp. 413–18.

    Google Scholar 

  6. U. Gonser:An Introduction to Mössbauer Spectroscopy, Plenum Press, New York, NY, 1971, pp. 155–79.

    Book  Google Scholar 

  7. S. A. Antolovich and B. Singh:Metall. Trans., 1971, vol. 2, pp. 2135–41.

    Article  Google Scholar 

  8. L. H. Schwartz and K. J. Kim:Metall. Trans. A, 1976, vol. 7A, pp. 1567–70.

    Article  Google Scholar 

  9. K. J. Kim and L. H. Schwartz:Mat. Sci. Eng., 1978, vol. 33, pp. 5–20.

    Article  Google Scholar 

  10. G. P. Huffman and F. E. Huggins:Mössbauer Effect and its Chemical Applications, American Chemical Society, Washington, DC, 1981, pp. 265–300.

    Book  Google Scholar 

  11. V. V. Sagardze, N. D. Zemtsova, E. I. Starchenko, V. A. Shakashov, and E. E. Urchikov:Fiz. Metal. Metalloved., 1983, vol. 55, pp. 99–110.

    Google Scholar 

  12. N. Hayashi, I. Sakamoto, T. Takahashi, and K. Kuriyama:Proc. Intl. Ion Eng. Conf., Kyoto, 1983, pp. 1919–24.

  13. G. Longworth:Mössbauer Spectroscopy Applied to Inorganic Chemistry Plenum Press, New York, NY, 1984, vol. 1, pp. 227–43.

    Book  Google Scholar 

  14. D. C. Cook and E. Agyekum:Nucl. Instrum. Meth., 1985, vol. B12, pp. 515–20.

    Article  Google Scholar 

  15. D. C. Cook:Hyperfine Interactions, 1986, vol. 29, pp. 1463–66.

    Article  Google Scholar 

  16. C. Wivel and S. Morup:J. Phys. E., 1981, vol. 14, pp. 605–10.

    Article  Google Scholar 

  17. R. Vandenberghe and E. DeGrave: private communication, Laboratory of Magnetism, University of Ghent, Ghent Belgium, 1985.

  18. D. D. Amarisiniwardena, E. De Grave, L. H. Bowen, and S. B. Weed:Clay Min., 1986, in press.

  19. V. N. Bugayev, V. G. Gavrilyuk, V. M. Nadutov, and V. A. Tatarenko:Acta Metall., 1983, vol. 31(3), pp. 407–18.

    Article  Google Scholar 

  20. U. Gonser, C. J. Meechan, A. H. Muir, and H. Weidersich:J. Appl. Phys., 1963, vol. 34(8), pp. 2373–78.

    Article  Google Scholar 

  21. M. Lesoille and P. M. Gielen:Metall. Trans., 1972, vol. 3, pp. 2681–89.

    Article  Google Scholar 

  22. N. DeCristofaro and R. Kaplow:Metall. Trans. A., 1977, vol. 8A, pp. 35–44.

    Article  Google Scholar 

  23. D. L. Williamson, K. Nakazawa, and G. Krauss:Metall. Trans. A, 1979, vol. 10A, pp. 1351–63.

    Article  Google Scholar 

  24. T. Kamenova and R. Banov:Bulg. J. Phys., 1982, vol. 9, pp. 138–50.

    Google Scholar 

  25. V. G. Gavrilyuk and V. M. Nadutov:Phys. Met. Metall., 1983, vol. 55, pp. 520–27.

    Google Scholar 

  26. J. M. Genin and P. A. Flinn:Trans. TMS-AIME, 1968, vol. 242, pp. 1491–30.

    Google Scholar 

  27. C. E. Johnson, M. S. Ridout, T. E. Cranshaw, and P. E. Madsen:Phys. Rev. Lett., 1961, vol. 6, pp. 450–51.

    Article  Google Scholar 

  28. G. K. Wertheim and J. H. Wernick:Phys. Rev., 1961, vol. 123, pp. 755–57.

    Article  Google Scholar 

  29. M. B. Stearns:Phys. Rev., 1963, vol. 129, pp. 1136–44.

    Article  Google Scholar 

  30. G. Shirane, C. W. Chen, P. A. Flinn, and R. Nathius:Phys. Rev., 1963, vol. 131, pp. 183–90.

    Article  Google Scholar 

  31. C. E. Johnson, M. S. Ridout, and T. E. Cranshaw:Proc. Phys. Soc., 1963, vol. 81, pp. 1079–90.

    Article  Google Scholar 

  32. G. K. Wertheim, V. Jaccarino, J. H. Wernick, and D. N. E. Buchanan:Phys. Rev. Lett., 1964, vol. 12, pp. 24–27.

    Article  Google Scholar 

  33. M. B. Stearns:J. Appl. Phys., 1964, vol. 35, pp. 1095–96.

    Article  Google Scholar 

  34. M. B. Stearns and S. S. Wilson:Phys. Rev. Lett., 1964, vol. 13, pp. 313–15.

    Article  Google Scholar 

  35. T. E. Cranshaw, C. E. Johnson, M. S. Ridout, and G. A. Murray:Phys. Lett., 1966, vol. 21, pp. 481–83.

    Article  Google Scholar 

  36. M. B. Stearns:Phys. Rev., 1966, vol. 147, pp. 439–53.

    Article  Google Scholar 

  37. H. L. Marcus and L. H. Schwartz:Phys. Rev., 1967, vol. 162, pp. 259–62.

    Article  Google Scholar 

  38. H. L. Marcus, M. E. Fine, and L. H. SchwartzJ. Appl. Phys., 1967, vol. 38, pp. 4750–58.

    Article  Google Scholar 

  39. F. E. Fujita:Topics in Applied Physics, Springer-Verlag, New York, NY, 1975, vol. 5, pp. 201–36.

    Google Scholar 

  40. U. Gonser, S. Nasu, W. Keune, and O. Weis:Sol. St. Comm., 1975, vol. 17, pp. 233–36.

    Article  Google Scholar 

  41. T. Sohmura and F. E. Fujita:Sol. St. Comm., 1978, vol. 25, pp. 43–46.

    Article  Google Scholar 

  42. J. B. Muller and J. Hesse:Z. Phys. B, 1983, vol. 54, pp. 43–48.

    Article  Google Scholar 

  43. B. Huck, F. Savrenbach, and J. Hesse:Hyperfine Interactions, 1986, vol. 28, pp. 479–82.

    Article  Google Scholar 

  44. J. Hesse and E. Hagen:Hyperfine Interactions, 1986, vol. 28, pp. 475–78.

    Article  Google Scholar 

  45. S. S. Hanna, R. S. Preston, and J. Heberle:Proceedings of the Second International Conference on the Mössbauer Effect, France, Wiley and Son, New York, NY, 1961, pp. 85–89.

    Google Scholar 

  46. J. Heberle:Mössbauer Effect Methodology Plenum Press, New York, NY, vol. 7, pp. 299–308.

  47. J. A. Sawicki and B. D. Sawicka:Hyperfine Interactions, 1983, vol. 13, pp. 199–219.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, D.C. Strain induced martensite formation in stainless steel. Metall Trans A 18, 201–210 (1987). https://doi.org/10.1007/BF02825701

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02825701

Keywords

Navigation