Skip to main content
Log in

A rapid visual method to identify transformed plants

  • Genetic Transformation/Somatic Cell Genetics
  • Published:
In Vitro – Plant Aims and scope Submit manuscript

Summary

A rapid, efficient assay that is nondestructive and semiquantitative for identifying transgenic plants and progeny from Biolistic® and protoplast transformations is described. Leaf sections of maize and wheat plants are placed on an indicator medium containing chlorophenol red and the selection agent. Changes in the color of the medium from red to yellow resulting from altered pH indicate transformed plants within 2-5 d. The method is particularly suited to use with phosphinothricin and could be used with other suitable selectable markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deblock, M. The cell biology of plant transformation current state, problems, prospects and the implications for the plant breeding. Euphytica 71:1-14; 1993.

    Article  CAS  Google Scholar 

  2. DeBlock, M.; DeBrouwer, D.; Tenning, P. Transformation ofBrassica napus andBrassica oleracea usingAgrobacterium tumefaciens and the expression of thebar andneo genes in the transgenic plants. Plant Physiol. 91:694-701; 1989.

    CAS  Google Scholar 

  3. DeKeyser, R.; Claes, B.; Marichal, M., et al. Evaluation of selectable markers for rice transformation. Plant Physiol. 90:217-223; 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Geiser, M.; Schweitzer, S.; Grimm, C. The hypervariable region in the genes coding for entomopathogenic crystal proteins ofBacillus thuringiensis: nucleotide sequence of the kurhdI gene of subsp. kurstaki HD1. Gene 48:109-118; 1986.

    Article  PubMed  CAS  Google Scholar 

  5. Harms, C. T.; Armour, S. L.; DiMaio, J. J., et al. Herbicide resistance due to amplification of a mutant acetohydroxyacid synthase gene. Mol. Gen. Genet. 233:427-435; 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Hudspeth, R. L.; Grula, J. W. Structure and expression of the maize gene encoding the phosphoenolpyruvate carboxylase isozyme involved in C4 photosynthesis. Plant Mol. Biol. 12:579-589; 1989.

    Article  CAS  Google Scholar 

  7. Koziel, M. G.; Beland, G. L.; Bowman, C., et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived fromBacillus thuringiensis. Bio/technology 11:194-200; 1993.

    Article  CAS  Google Scholar 

  8. Kramer, C.; DiMaio, J.; Carswell, G., et al. Selection of transformed protoplast-derivedZea mays colonies with phosphinothricin and a novel assay using the pH indicator chlorophenol red. Planta 190:454-458; 1993.

    Article  CAS  Google Scholar 

  9. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497; 1962.

    Article  CAS  Google Scholar 

  10. Reed, J.; Jayne, S.; Nahory, J., et al. Production of fertile transgenic wheat plants by particle bombardment of immature embryos. In: Abstracts VIIIth International Congress of Plant Tissue and Cell Culture; 1994; p. 149.

  11. Ryu, D. D. Y.; Lee, S. O.; Romani, R. J. Determination of growth rate for plant cell cultures: comparative studies. Biotech. Bioeng. 35:305-311; 1990.

    Article  CAS  Google Scholar 

  12. Shang, X. M.; Huang, J. Y.; Haigler, C. H., et al. Buffer capacity of cotton cells and effects of extracellular pH on growth and somatic embryogenesis in cotton cell suspensions. In Vitro Cell. Dev. Biol. 27P:147-152; 1991.

    Google Scholar 

  13. Shillito, R. D.; Carswell, G. K.; Johnson, C. M., et al. Regeneration of fertile plants from protoplasts of elite inbred maize. Bio/technology 7:581-587; 1989.

    Article  Google Scholar 

  14. Thompson, D. J.; Movya, N. R.; Tizard, R., et al. Characterization of the herbicide-resistance genebar fromStreptomyces hygroscopus. EMBO J. 6:2519-2524; 1987.

    PubMed  CAS  Google Scholar 

  15. Vasil, V.; Srivastava, V.; Castillo, A. M., et al. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/technology 11:1553-1558; 1993.

    Google Scholar 

  16. Weeks, T.; Anderson, O. D.; Blechl, A. E. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102:1077-1084; 1993.

    PubMed  CAS  Google Scholar 

  17. Weeks, T., et al. Stable transformation of wheat (T. aestivum) by microprojectile bombardment. Keystone Symposium: Improved crop and plant products through biotechnology, Jan 9-16, 1994.

  18. Weymann, K.; Urban, K.; Ellis, D., et al. Isolation of transgenic progeny of maize by embryo rescue under selective conditions. In Vitro Cell. Dev. Biol. 29P:33-37; 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, M.S., Launis, K., Bowman, C. et al. A rapid visual method to identify transformed plants. In Vitro Cell Dev Biol – Plant 32, 11–13 (1996). https://doi.org/10.1007/BF02823006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823006

Key words

Navigation