Skip to main content
Log in

Evidence forTAM3 activity in transgenicArabidopsis thaliana

  • Genetic Transformation/Somatic Cell Genetics
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

TheAntirrhinum majus Tam3 element was introduced intoArabidopsis thaliana protoplasts and plants in order to assess the influence of anin vitro culture phase such as protoplasts and callus culture on the mobility of this transposable element in this plant species. The constructs used contained theTam3 element inserted in between the CaMV 35S promoter and thegus- orhpt-coding region, allowing a direct selection of excision candidates. From the different approaches used, only a long-term callus culture allowed us to detectTam3 activity. NoTam3 activity could be detected in protoplasts or protoplast-derived microcolonies. Our data are compared with those previously reported forTam3 in tobacco and petunia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts, M. G. M.; Dirkse, W. G.; Stiekema, W. J., et al. Transposon tagging of a male sterility gene inArabidopsis. Nature, 363:715; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Baker, B.; Schell, J.; Lörz, H., et al. Transposition of the maize controlling elementActivator in tobacco. Proc. Natl. Acad. Sci. USA 83:4844; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Balcells, L.; Swinburne, J.; Coupland, G. Transposons as tools for the isolation of plant genes. TIBTECH: trends in Biotechnology 9:31; 1991.

    Article  Google Scholar 

  • Baran, G.; Echt, C.; Bureau, T., et al. Molecular analysis of the maizeux-B3 allele indicates that precise excision of the transposableAc element is rare. Genetics 130:377; 1992.

    PubMed  CAS  Google Scholar 

  • Chandler, V. L.; Walbot, V. DNA modification of a maize transposable element correlates with loss of activity. Proc. Natl. Acad. Sci. USA 83:1767; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Chang, S. S.; Park, S. K.; Kim, B. C., et al. Stable genetic transformation ofArabidopsis thaliana byAgrobacterium inoculationin planta. The Plant Journal 5(4):551; 1994.

    Article  CAS  Google Scholar 

  • Chaudhury, A. M.; Signer, E. R. Non-destructive transformation ofArabidopsis. Plant Mol. Biol. Reporter 7(4):258; 1989.

    Google Scholar 

  • Chomet, P. S.; Wessler, S.; Dellaporta, S. L.. Inactivation of the maize transposable elementActivator (Ac) is associated with its DNA modification. EMBO J. 6(2):295; 1987.

    PubMed  CAS  Google Scholar 

  • Chuck, G.; Robbins, T.; Nijjar, C., et al. Tagging and cloning of aPetunia flower color gene with the maize transposable elementActivator. Plant Cell 5:371; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, M. C.; Wei, W.; Lindsey, K. High-frequency transformation ofArabidopsis thaliana byAgrobacterium tumefaciens. Plant Mol. Biol. Reporter 10(2):178; 1992.

    Article  Google Scholar 

  • Dhaese, P.; De Greve, H.; Decraemer, H., et al. Rapid mapping of transposon insertion and deletion mutations in the large Ti-plasmids ofAgrobacterium tumefaciens Nucleic Acids Res. 7:1837; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Döring, H. P.; Starlinger, P. Molecular genetics of transposable elements in plants. Annu. Rev. Genet. 20:175; 1986.

    PubMed  Google Scholar 

  • Evola, S. V; Burr, F. A.; Burr, B. The nature of tissue culture induced mutations in maize. 11th Annu. Aharon Katzir-Katchalsky Conf., Jerusalem, 1984, Abstract.

  • Feenstra, W. J. Isolation of nutritional mutants inArabidopsis thaliana. Genetica 35:259; 1964.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg, A. P.; Vogelstein, B. A technique for radiolabelling DNA restriction fragments to high specific activity. Anal. Biochem. 132:6; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Feldmann, K. A.; Marks, M. D.Agrobacterium-mediated transformation of germinating seeds ofArabidopsis thaliana: a non-tissue culture approach. Mol. & Gen. Genet. 208:1; 1987.

    Article  CAS  Google Scholar 

  • Fitzmaurice, W. P.; Lehman, L. J.; Nguyen, L. V., et al. Development and characterization of a generalized gene tagging system for higher plants using an engineered maize transposon Ac. Plant Mol. Biol. 20:177; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Grevelding, C.; Fantes, V.; Kemper, E., et al. Single-copy T-DNA insertions inArabidopsis are the predominant form of integration in root-derived transgenics, whereas multiple insertions are found in leaf discs. Plant Mol. Biol. 23:847; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Groose, R. W.; Bingham, E. T. An unstable anthocyanin mutation recovered from tissue culture of alfalfa (Medicago sativa). Plant Cell Rep. 5:104–108; 1986.

    Article  CAS  Google Scholar 

  • Haring, M. A.; Gao, J.; Volbeda, T., et al. A comparative study ofTam3 andAc transposition in transgenic tobacco and petunia plants. Plant Mol. Biol. 13:189; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Haring, M. A.; Rommens, C. M. T.; Nijkamp, H. J. J., et al. The use of transgenic plants to understand transposition mechanisms and to develop transposon tagging strategies. Plant Mol. Biol. 16:449; 1991a.

    Article  PubMed  CAS  Google Scholar 

  • Haring, M. A.; Scofield, S.; Teeuwen-De Vroomen, M. J., et al. Novel DNA structures resulting fromdTam3 excision in tobacco. Plant Mol. Biol. 17:995; 1991b.

    Article  PubMed  CAS  Google Scholar 

  • Hirochika, H. Activation of tobacco retrotransposons during tissue culture. EMBO J. 12(6):2521; 1993.

    PubMed  CAS  Google Scholar 

  • Hoekema, A.; Hirsch, P. R.; Hooykaas, P. J. J., et al. A binary vector strategy based on separation ofvir-and T-region of theAgrobacterium tumefaciens Ti-plasmid. Nature 303:179, 1983.

    Article  CAS  Google Scholar 

  • Jefferson, R. A.; Kavanagh, T. A.; Bevan, M. W.Gus-fusions β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901; 1987.

    PubMed  CAS  Google Scholar 

  • Karesh, H.; Bilang, R.; Mittelsten Scheid, O., et al. Direct gene transfer to protoplasts ofArabidopsis thaliana. Plant Cell Rep. 9:571; 1991.

    Google Scholar 

  • Larkin, P. J.; Scowcroft, W. R. Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60:197; 1981.

    Article  Google Scholar 

  • Mandal, A.; Lang, V.; Orczyk, W., et al. Improved efficiency for T-DNA-mediated transformation and plasmid rescue inArabidopsis thaliana. Theor. Appl. Genet. 86:621; 1993.

    Article  CAS  Google Scholar 

  • Martin, C.; Prescott, A.; Lister, C., et al. Activity of the transposonTam3 inAntirrhinum and tobacco: possible role of DNA methylation. EMBO J. 8(4):997; 1989.

    PubMed  CAS  Google Scholar 

  • Marton, L.; Browse, J. Facile transformation ofArabidopsis. Plant Cell Rep. 10:235; 1991.

    Article  Google Scholar 

  • McClintock, B. The significance of responses of the genome to challenge. Science 226:792; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Murray, M. G.; Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8:4321; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Negrutiu, I.; Beeftink, F.; Jacobs, M.Arabidopsis thaliana as a model plant system in somatic cell genetics, I: cell and tissue culture. Plant Sci. Lett. 5:293; 1975.

    Article  CAS  Google Scholar 

  • Negrutiu, I.; Shillito, R.; Potrykus, I., et al. Hybrid genes in the analysis of transformation conditions. Plant Mol. Biol. 8:363; 1987.

    Article  CAS  Google Scholar 

  • Peschke, V. M.; Phillips, R. L. Genetic implications of somaclonal variation in plants. Adv. Genet. 30:41; 1992.

    CAS  Google Scholar 

  • Peschke, V. M.; Phillips, R. L.; Gengenbach, B. G. Discovery of transposable element activity among progeny of tissue culture-derived maize plants. Science 238:804; 1987.

    Article  PubMed  Google Scholar 

  • Pouteau, S.; Grandbastien, M. A.; Boccara, M. Microbial elicitors of plant defence responses activate transcription of a retrotransposon. The Plant Journal 5:535; 1994.

    Article  CAS  Google Scholar 

  • Pouteau, S.; Huttner, E.; Grandbastien, M. A., et al. Specific expression of the tobaccoTnt1 retrotransposon in protoplasts. EMBO J. 10(7):1911; 1991.

    PubMed  CAS  Google Scholar 

  • Schwartz, D. Gene-controlled cytosine demethylation in the promoter region of theAc transposable element in maize. Proc. Natl. Acad. Sci. USA 86:2789; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, D.; Dennis, E. Transposase activity of theAc controlling element in maize is regulated by its degree of methylation. Mol. & Gen. Genet. 205:476; 1986.

    Article  CAS  Google Scholar 

  • Sommer, H.; Hehl, R.; Krebbers, E., et al. In: Nelson, O., ed. Plant transposable elements. New York: Plenum Press; 1988;227–236.

    Google Scholar 

  • Southern, E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Tsay, Y. F.; Frank, M. J.; Page, T., et al. Identification of a mobile endogenous transposon inArabidopsis thaliana. Science 260:342; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Valvekens, D.; Van Montagu, M.; Van Lijsebettens, M.Agrobacterium tumefaciens-mediated transformation ofArabidopsis thaliana root explants by using kanamycin selection. Proc. Natl. Acad. Sci. USA 85:5536; 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Greef, B., Jacobs, M. Evidence forTAM3 activity in transgenicArabidopsis thaliana . In Vitro Cell.Dev.Biol.-Plant 32, 241–248 (1996). https://doi.org/10.1007/BF02822694

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02822694

Key words

Navigation