Skip to main content
Log in

Dopamine receptor localization in the mammalian retina

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

After a short history of dopamine receptor discovery in the retina and a survey on dopamine receptor types and subtypes, the distribution of dopamine receptors in the retinal cells is described and correlated with their possible role in cell and retinal physiology. All the retinal cells probably bear dopamine receptors. For example, the recently discovered D1B receptor has a possible role in modulating phagocytosis by the pigment epithelium and a D4 receptor is likely to be involved in the inhibition of melatonin synthesis in photoreceptors. Dopamine uncouples horizontal and amacrine cell-gap junctions through D1-like receptors. Dopamine modulates the release of other transmitters by subpopulations of amacrine cells, including that of dopamine through a D2 autoreceptor. Ganglion cells express dopamine receptors, the role of which is still uncertain. Müller cells also are affected by dopamine. A puzzling action of dopamine is observed in the ciliary retina, in which D1- and D2-like receptors are likely to be involved in the cyclic regulation of intraocular pressure. Most of the dopaminergic actions appears to be extrasynaptic and the signaling pathways remain uncertain. Further studies are needed to better understand the multiple actions of dopamine in the retina, especially those that implicate rhythmic regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schorderet M. and Nowak J. Z. (1990) Retinal dopamine D1 and D2 receptors: characterization by binding or pharmacological studies and physiological functions.Cell. Mol. Neurobiol. 10, 303–325.

    PubMed  CAS  Google Scholar 

  2. Ehinger B. (1976) Biogenic monoamines as transmitters in the retina, inTransmitters in the Visual Process (Bonting S. L., ed.), Pergamon, Oxford, UK, pp. 145–163.

    Google Scholar 

  3. Da Prada M. (1977) Dopamine content and synthesis in retina and nucleus accumbens septi: pharmacological and light-induced modifications, inAdvance in Biochemical Psychopharmacology, vol. 16 (Costa E. and Gessa G. L., eds.), Raven, New York, pp. 311–319.

    Google Scholar 

  4. Ames A. and Pollen D. A. (1969). Neurotransmission in central nervous system: a study of isolated rabbit retina.J. Neurophysiol. 32, 424–442.

    PubMed  Google Scholar 

  5. Strachill M. and Perwein J. (1969) The inhibition of retinal ganglion cells by catecholamines and gamma-aminobutyric acid.Pflügers Arch. 312, 45–54.

    Google Scholar 

  6. Brown J. H. and Makman M. H. (1972) Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3′:5′-cyclic monophosphate formation in intact retina.Proc. Natl. Acad. Sci. USA 69, 539–543.

    PubMed  CAS  Google Scholar 

  7. Brown J. H. and Makman M. H. (1973) Influence of neuroleptic drugs and apomorphin on dopamine-sensitive adenylate cyclase of retina.J. Neurochem. 21, 477–479.

    PubMed  CAS  Google Scholar 

  8. Kebabian J. W. and Calne D. B., (1979) Multiple receptors for dopamine.Nature 277, 93–96.

    PubMed  CAS  Google Scholar 

  9. Schorderet M., McDermed J., and Magistretti P. (1978) Dopamine receptors and cyclic AMP in rabbit retina.J. Physiol. London.74, 509–514.

    CAS  Google Scholar 

  10. Magistretti P. and Schorderet M. (1978) Diffential effects of benzamides and thioxanthenes on dopamine-elicited accumulation of cyclic AMP in isolated rabbit retina.Nauyn-Schmiedeberg's Arch. Pharmacol. 303, 189–192.

    CAS  Google Scholar 

  11. Redburn D. A., Clement-Cormier Y. C. and Lam D. M. K. (1980) Dopamine receptors in the goldfish retina: [3H]spiroperidol and [3H]domperidone binding; and dopamine-stimulated adenylate cyclase activity.Life Sci. 27, 23–31.

    PubMed  CAS  Google Scholar 

  12. Watling K. J., Dowling, J. E. and Iversen L. L. (1979) Dopamine receptors in the retina may be all linked to adenylate cyclase.Nature 281, 578–580.

    PubMed  CAS  Google Scholar 

  13. Gredal O., Parkinson D. and Nielsen M. (1987) Binding of [3H]SCH 23390 to dopamine D-1 receptors in rat retinain vitro.Eur. J. Pharmacol. 137, 241–245.

    PubMed  CAS  Google Scholar 

  14. Qu Z. X., Fertel R., Neff N. H. and Hadjiconstantinou M. (1989) Pharmacological characterization of rat retinal dopamine receptors.J. Pharmacol. Exp. Ther. 248, 621–625.

    PubMed  CAS  Google Scholar 

  15. De Mello M. C. F. and De Mello F. G. (1985) Topographical organization of the dopamine-dependent adenylate cyclase of the chick embryo retina.Brain Res. 328, 59–64.

    PubMed  Google Scholar 

  16. Clement-Cormier Y. C. and Redburn D. A. (1978) Dopamine-sensitive adenylate cyclase in retina: subcellular distribution.Biochem. Pharmacol. 27, 2281,2282.

    PubMed  CAS  Google Scholar 

  17. Redburn D. A. and Kyles C. B. (1980) Localization and characterization of dopamine receptors within two synaptosome fractions of rabbit and bovine retina.Exp. Eye Res. 30, 699–708.

    PubMed  CAS  Google Scholar 

  18. Terashima T., Katada T., Oinuma M., Inoue Y., and Ui M. (1987) Immunohistochemical localization of guanine nucleotide binding protein in rat retina.Brain Res. 410, 97–100.

    PubMed  CAS  Google Scholar 

  19. Zarbin M. A., Wamsley J. K., Palacios J. M., and Kuhar M. J. (1986) Autoradiographic localization of high affinity GABA, benzodiazepine, dopaminergic, adrenergic and muscarinic cholinergic receptor in the rat, monkey and human retina.Brain Res. 374, 75–92.

    PubMed  CAS  Google Scholar 

  20. Elena P. P., Denis P., Kosina-Boix M., and Lapalus P. (1989) Dopamine receptors in rabbit and rat eye: characterization and localization of DA1 and DA2 binding sites.Curr. Eye Res. 8, 75–83.

    PubMed  CAS  Google Scholar 

  21. Denis P., Elena P. P., Nordmann J. P., Saraux H., and Lapalus P. (1990) Autoradiographic localization of D1 and D2 dopamine binding sites in the human retina.Neurosci. Lett. 116, 81–86.

    PubMed  CAS  Google Scholar 

  22. Tran V. T. and Dickman M (1992) Differential localization of dopamine D1 and D2 receptors in rat retina.Invest. Ophthalmol. Vis. Sci. 33, 1620–1626.

    PubMed  CAS  Google Scholar 

  23. Behrens U. D. and Wagner H. J. (1995) Localization of dopamine D-1 receptors in vertebrate retinae.Neurochem. Int. 27, 497–507.

    PubMed  CAS  Google Scholar 

  24. Nguyen-Legros J. (1988) Morphology and distribution of catecholamine neurons in mammalian retina.Prog. Ret. Res. 7, 113–147.

    Google Scholar 

  25. VuVan T., Geffard M., Denis P., Simon A. and Nguyen-Legros J. (1993) Radioimmunoligand characterization and immunohistochemical localization of dopamine D2 receptor on rods in the rat retina.Brain Res. 614, 57–64.

    PubMed  CAS  Google Scholar 

  26. Wagner H. J., Luo B. G., Ariano M. A., Sibley D. R. and Stell W. K. (1993) Localization of D2 dopamine receptors in vertebrate retinae with anti-peptide antibodies.J. Comp. Neurol. 331, 469–481.

    PubMed  CAS  Google Scholar 

  27. Veruki M. L. and Wässle H. (1996) Immunohistochemical localization of dopamine D1 receptors in rat retina.Eur. J. Neurosci. 8, 2286–2297.

    PubMed  CAS  Google Scholar 

  28. Bjelke B., Goldstein M., Tinner B., Andersson C., Sesack S. R., Steinbusch H. W. M., Lew J. Y., He X., Watson S., Tengroth B., and Fuxe K. (1996) Dopaminergic transmission in the rat retina: evidence for volume transmission.J. Chem. Neuroanat. 12, 37–50.

    PubMed  CAS  Google Scholar 

  29. Nguyen-Legros J., Simon A., Caillé I., and Bloch B. (1997) Immunocytochemical localization of dopamine D1 receptors in the retina of mammals.Vis. Neurosci. 14, 547–551.

    Google Scholar 

  30. Veruki M. L. (1997) Dopaminergic neurons in the rat retina express dopamine D2/3 receptors.Eur. J. Neurosci. 9, 1096–1100.

    PubMed  CAS  Google Scholar 

  31. Mora-Ferrer C., Yazulla S. and Studholme K. M. (1997) A novel D1-dopamine receptor antibody labels D1-receptors in lower and higher vertebrate retinas.Invest. Ophthalmol. Vis. Sci. 38, S47.

    Google Scholar 

  32. Cohen A. I., Todd R. D., Harmon S. and O'Malley K. L. (1992) Photoreceptors of mouse retina possess D4 receptors coupled to adenylate cyclase.Proc. Natl. Acad. Sci. USA 89, 12,093–12,097.

    CAS  Google Scholar 

  33. Prünte Ch., Markstein R., and Landwehrmeyer G. B. (1992) Distribution of tyrosine hydroxylase and dopamine receptor mRNA in human retina.Invest. Ophthalmol. Vis. Sci. 33, 1404.

    Google Scholar 

  34. Tran V. T. and Wu L. Y. (1992) In situ localization of subtypes of D2 dopamine receptors in the rat retina.Invest. Ophthalmol. Vis. Sci. 33, 1404.

    Google Scholar 

  35. Versaux-Botteri C., Gibert J. M., Nguyen-Legros J., and Vernier P. (1997) Molecular identification of a D1b receptor in cultured bovine retinal pigment epithelium.Neurosci. Lett. 237, 9–12.

    PubMed  CAS  Google Scholar 

  36. Peroutka S. J. (1994)Handbook of Receptors and Channels. G Protein-Coupled Receptors. CRC, Boca Raton, FL.

    Google Scholar 

  37. Niznik H. B. (1995)Dopamine Receptors and Transporters. Marcel Dekker, New York.

    Google Scholar 

  38. Neve K. A. and Neve R. L. (1997)The Dopamine Receptors. Humana Totowa, NJ.

    Google Scholar 

  39. Seemann P. (1982) Nomenclature of central dopaminergic sites and receptors.Biochem. Pharmacol. 31, 2563–2569.

    Google Scholar 

  40. Guderman T., Schöneberg T., and Schultz G. (1997) Functional and structural complexity of signal transduction via G-protein coupled receptors.Ann. Rev. Neurosci. 20, 399–427.

    Google Scholar 

  41. Valdenaire O. and Vernier P. (1997) G-protein-coupled receptors as modules of interacting proteins: a family meeting.Prog. Drug Res. 49, 123–158.

    Google Scholar 

  42. Vernier P., Cardinaud B., Valdenaire O., Philippe H. and Vincent J.D. (1995) An evolutionary view of drug-receptor interaction. The bioamine receptors family.Trends Pharmacol. Sci. 16, 375–381.

    PubMed  CAS  Google Scholar 

  43. Cardinaud B., Gibert J. M., Liu F., Sugamori K. S., Vincent J. D., Niznik, H. B., and Vernier P. (1998) Evolution and origin of the diversity of dopamine receptors in vertebrates.Adv. Pharmacol. 42, 936–940.

    PubMed  CAS  Google Scholar 

  44. Sugamori K. S., Demchyshyn L. L., Chung M., and Niznik H. B. (1994) D1A, D1B and D1C receptors from Xenopus laevis.Proc. Natl. Acad. Sci. USA 91, 10536–10540.

    PubMed  CAS  Google Scholar 

  45. Cardinaud B., Sugamori K. S., Coudouel S., Vincent J. D., Niznik H. B., and Vernier P. (1997) Early emergence of three D1 receptor subtypes in european eelAnguilla anguilla.J. Biol. Chem. 272, 2778–2787.

    PubMed  CAS  Google Scholar 

  46. Demchyshyn L. L., Sugamori K. S., Lee F. J., Hamadanizadeh S. A., Niznik H. B. (1995) The dopamine D1D receptor. Cloning and characterization of 3 pharmacologically distinct D1-like rceptors from Gallus domesticus.J. Biol. Chem. 24, 4005–4012.

    Google Scholar 

  47. Niznik H. B., Liu F., Sugamori K., Cardinaud B., and Vernier P. (1998) Expansion of the D1 receptor gene family: defining molecular, pharmacological and functional criteria for D1a, D1b, D1c and D1d receptors.Adv. Pharmacol. 42, 404–408.

    PubMed  CAS  Google Scholar 

  48. Undie A. S., Weinstock J., Sarai H. M. and Friedman E. (1994) Evidence for a distinct D1-like dopamine receptor that couples to activation of phosphoinositide metabolism in brain.J. Neurochem. 62, 2045–2048.

    PubMed  CAS  Google Scholar 

  49. Schiffmann S. N., Lledo P. M. and Vincent J. D. (1995) Dopamine D1 receptor modulates the voltage-gated sodium current in rat striatal neurons through a protein kinase.Am. J. Physiol. (Lond.) 483, 95–107.

    CAS  Google Scholar 

  50. Felder C. C., Albrecht F. E., Campbell T., Eisner G. M. and Jose P. A. (1983) cAMP independent, G-protein-linked inhibition of Na+/H+ exchange in renal brush border by D1 dopamine agonist.Am. J. Physiol. 264, F1032–1037.

    Google Scholar 

  51. Laitinen J. T. (1993) Dopamine stimulates K+ efflux in the chick retina via D1 receptors independently of adenylyl cyclase activation.J. Neurochem. 61, 1461–1469.

    PubMed  CAS  Google Scholar 

  52. Van Tol H. H. M. (1998) Structural and functional characteristics of the dopamine D4 receptor.Adv. Pharmacol. 42, 486–490.

    PubMed  Google Scholar 

  53. Sokoloff P., and Schwartz J. C. (1995) Novel dopamine receptors half a decade later.Trends Pharmacol. Sci. 16, 270–275.

    PubMed  CAS  Google Scholar 

  54. Huff R. M., Chio C. L., Lajiness M. E., and Goodman L. V. (1998) Signal transduction pathways modulated by D2-like dopamine receptors.Adv. Pharmacol. 42, 454–457.

    PubMed  CAS  Google Scholar 

  55. Lledo P. M., Vernier P., Kukstas L. A. and Vincent J. D. (1994) Coupling of dopamine receptors to ionic channels in excitable tissues, inDopamine Receptors and Transporters (Niznik H. B., ed.), Marcel Dekker, New York, pp. 59–88.

    Google Scholar 

  56. Vîlkel H., Beitz E., Klumpp S., and Schultz J. E. (1996) Cloning and expression of a bovine adenylyl cyclase type VII specific to the retinal pigment epithelum.FEBS Letts. 378, 245–249.

    Google Scholar 

  57. Hanoune J., Pouille Y., Tzavara E., Shen T., Lipskaya L., Miyamoto N., Suzuki Y., and Defer N. (1997) Adenylyl cyclases: structure, regulation and function in an enzyme superfamily.Mol. Cell. Endocrinol. 128, 179–194.

    PubMed  CAS  Google Scholar 

  58. Young R. W. (1976) Visual cells and the concept of renewal.Invest. Ophthalmol. 15, 700–725.

    CAS  Google Scholar 

  59. LaVail M. M. (1980) Circadian nature of rod outer segment disc shedding in the rat.Invest. Ophthalmol. Vis. Sci. 19, 407–411.

    PubMed  CAS  Google Scholar 

  60. Edwards R. B. and Flaherty P. M. (1986) Association of changes in intracellular cyclic AMP with changes in phagocytosis in cultured rat pigment epithelium.Curr. Eye Res. 5, 19–26.

    PubMed  CAS  Google Scholar 

  61. Remé C., Wirz-Justice A., Rhyner A., and Hofmann S. (1986) Circadian rhythm in the light response of rat retinal disk-shedding and autophagy.Brain Res. 369, 356–360.

    PubMed  Google Scholar 

  62. Terman J.S., Remé C., and Terman M. (1993) Rod outer segment disk shedding in rats with lesions of the suprachiasmatic nucleus.Brain Res. 605, 256–264.

    PubMed  CAS  Google Scholar 

  63. Wirz-Justice A., Da Prada M., and Remé C. (1984) Circadian rhythm in rat retinal dopamine.Neurosci. Lett. 45, 1071–1073.

    Google Scholar 

  64. Mariani A. P., Neff N. H., and Hadjiconstantinou M. (1986) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment decreases dopamine and increases lipofuscine in mouse retina.Neurosci. Lett. 72, 221–226.

    PubMed  CAS  Google Scholar 

  65. Masri H., Goureau O., Hecquet C., Simon A., and Nguyen-Legros J. (1996) La dopamine ralentit la phagocytose des bâtonnets par l'épithélium pigmentaire de boeufin vitro grâce à un récepteur D1.C. R. Acad. Sci. Paris 319, 687–691.

    PubMed  CAS  Google Scholar 

  66. Friedman Z., Hackett S. F., and Campochiaro P. A. (1987) Characterization of adenylate cyclase in human retinal pigment epithelial cellsin vitro.Exp. Eye Res. 44, 471–479.

    PubMed  CAS  Google Scholar 

  67. Nash M.S. and Osborne N.N. (1995) Pertussissensitive melatonin receptors negatively coupled to adenylate cyclase associated with cultured human and rat retinal pigment epithelial cells.Invest. Ophthalmol. Vis. Sci. 36, 95–102.

    PubMed  CAS  Google Scholar 

  68. Koh S. W. M. and Chader G. J. (1984) Retinal pigment epithelium in culture demonstrates a distinct β-adrenergic receptor.Exp. Eye Res. 38, 7–13.

    PubMed  CAS  Google Scholar 

  69. Frambach D. A., Fain G. L., Farber D. B., and Bok D. (1990) β-Adrenergic receptors on cultured human retinal pigment epithelium.Invest. Ophthalmol. Vis. Sci. 31, 1767–1772.

    PubMed  CAS  Google Scholar 

  70. Tran V. T. (1992) Human retinal pigment epithelial cells posses β2-a receptors.Exp. Eye Res. 55, 413–418.

    PubMed  CAS  Google Scholar 

  71. Marmor M. F. and Lurie M. (1979) Light-induced electrical responses of the retinal pigment epithelium, inThe Retinal Pigment Epithelium (Zinn K. M. and Marmor M. F., eds.), Harvard University Press, Cambridge, MA, pp. 226–244.

    Google Scholar 

  72. Dawis S. M. and Niemeyer G. (1986) Dopamine influences the light peak in the perfused mammalian eye.Invest. Ophthalmol. Vis. Sci. 27, 330–335.

    PubMed  CAS  Google Scholar 

  73. Nguyen-Legros J., Harnois C., Di Paolo T., and Simon A. (1993) The retinal dopamine system in Parkinson's disease.Clin. Vis. Sci. 8, 1–12.

    Google Scholar 

  74. Economou S. G. and Stefanis C. N. (1978) Changes of electrooculogram (EOG) in Parkinson's disease.Acta Neurol. Scand. 58, 44–52.

    PubMed  CAS  Google Scholar 

  75. Anderson M. L. and Purple R. L. (1980) Circadian rhythms and variability of the clinical electro-oculogram.Invest. Ophthalmol. Vis. Sci. 19, 278–288.

    PubMed  CAS  Google Scholar 

  76. Nao-i N., Gallemore R. P., and Steinberg R. H. (1990) Effects of cAMP and IBMX on the chick retinal pigment epithelium.Invest. Ophthalmol. Vis. Sci. 31, 54–66.

    PubMed  CAS  Google Scholar 

  77. Dearry A. and Burnside B. (1988) Stimulation of distinct D2 dopaminergic and α2-adrenergic receptors induces light-adaptive pigment dispersion in teleost retinal pigment epithelium.J. Neurochem. 51, 1516–1523.

    PubMed  CAS  Google Scholar 

  78. Dearry A., Edelman J.L., Miller S., and Burnside B. (1990) Dopamine induces light-adaptive retinomotor movements in bullfrog cones via D2 receptors and in retinal pigment epithelium via D1 receptors.J. Neurochem. 54, 1367–1378.

    PubMed  CAS  Google Scholar 

  79. Gallemore R. P. and Steinberg R. H. (1990) Effects of dopamine on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses.Invest. Ophthalmol. Vis. Sci. 31, 67–80.

    PubMed  CAS  Google Scholar 

  80. Bruinink A., Dawis S., Niemeyer G., and Lichtensteiger W. (1986) Catecholamine binding sites in cat retina, pigment epithelium and choroid.Exp. Eye Res. 43, 147–151.

    PubMed  CAS  Google Scholar 

  81. Bondy S. C., Ali S. F., Hong J. S., Wilson W. E., Fletcher T., and Chader G. (1983) Neurotrans-mitter-related features of the retinal pigment epithelium.Neurochem. Int. 5, 285–290.

    CAS  Google Scholar 

  82. Dearry A., Falardeau P., Shores C., and Caron M. G. (1991) D2 dopamine receptors in the human retina: cloning of cDNA and localization of mRNA.Cell. Mol. Neurobiol. 11, 437–453.

    PubMed  CAS  Google Scholar 

  83. Zarbin M. A., Baraban J., and Worley P. (1989) Autoradiographic distribution of forskolin and phorbol ester binding sites in the retina.Brain Res. 497, 334–343.

    PubMed  CAS  Google Scholar 

  84. Friedman E., Jin L. Q., Cai G. P., Hollon T. R., Drago J., Sibley D. R., and Wang H. Y. (1997) D1_like dopaminergic activation of phosphoinositide hydrolysis is independent of D1A dopamine receptors: evidence from D1A knockout mice.Mol. Pharmacol. 51, 6–11.

    PubMed  CAS  Google Scholar 

  85. Hall M. O., Abrams T. K., and Mittag T. W. (1991) ROS ingestion by RPE cells is turned off by increased protein kinase C activity and increased calcium.Exp. Eye Res. 52, 591–598.

    PubMed  CAS  Google Scholar 

  86. Besharse J. C., Iuvone P. M., and Pierce M. E. (1988) Regulation of rhythmic photoreceptor metabolism: a role for post-receptoral neurons.Prog. Ret. Res. 7, 21–61.

    CAS  Google Scholar 

  87. Dubocovich M. L. (1983) Melatonin is a potent modulator of dopamine release in the retina.Nature 306, 782–784.

    PubMed  CAS  Google Scholar 

  88. Nowak J. Z., Kazula A., and Golembiowska K. (1992) Melatonin increases serotonin N-acetyl-transferase activity and decreases dopamine synthesis in light-exposed chick retina: in vivo evidence supporting melatonin-dopamine interaction in retina.J. Neurochem. 53, 307–310.

    Google Scholar 

  89. Tamai M., Teirstein P., Goldman A., O'Brien P., and Chader G. (1978) The pineal gland does not control rod outer segment shedding and phago-cytosis in the rat retina and pigment epithelium.Invest. Ophthalmol. Vis. Sci. 17, 558–562.

    PubMed  CAS  Google Scholar 

  90. Remé C. E., Wirz-Justice A., and Terman M. (1991) The visual input stage of the mammalian circadian pacemaker system. I. Is there a clock in the mammalian eye? II. The effect of light and drugs on retinal function.J. Biol. Rhyth. 6, 5–48.

    Google Scholar 

  91. White M. P. S. and Fisher L. J. (1987) Degree of light damage to the retina varies with time of day of bright light exposure.Physiol. Behav. 39, 607–613.

    PubMed  CAS  Google Scholar 

  92. Nguyen-Legros J., Chanut E., Versaux-Botteri C., Simon A., and Trouvin J. H. (1996) Dopamine inhibits melatonin synthesis in photoreceptor cells through a D2-like receptor subtype in the rat retina: biochemical and histochemical evidence.J. Neurochem. 67, 2514–2520.

    PubMed  CAS  Google Scholar 

  93. Brann M. R. and Young W. S. III (1986) Dopamine receptors are located on rods in bovine retina.Neurosci. Lett. 69, 221–226.

    PubMed  CAS  Google Scholar 

  94. Tosini G., and Menaker M. (1996) Mammalian retina: a new model for in vitro circadian studies. US/France Joint Int. Worshop in Chronobiology, Lyon 1996, 44.

  95. Stormann T. M., Gdula D. C., Weiner D. M., and Brann M. R. (1989) Molecular cloning and expression of a dopamine D2 receptor from human retina.Mol. Pharmacol. 37, 1–6.

    Google Scholar 

  96. Dubocovich M. L., Lucas R. C., and Takahashi J. S. (1985) Light-dependent regulation of dopamine receptors in mammalian retina.Brain Res. 335, 321–325.

    PubMed  CAS  Google Scholar 

  97. Porceddu M. I., De Montis G., Mele S., Ongini E., and Biggio G. (1987) D1 dopamine receptors in the rat retina: effect of dark adaptation and chronic blockade by SCH23390.Brain Res. 424, 264–271.

    PubMed  CAS  Google Scholar 

  98. Nowak J. Z., Sek B., and Schorderet M. (1991) Dark-induced supersensitivity of dopamine D-1 and D-2 receptors in rat retina.NeuroReport 2, 429–432.

    PubMed  CAS  Google Scholar 

  99. Cohen A. I. and Blazynski C. (1990) Dopamine and its agonists reduce a light-sensitive pool of cAMP in mouse photoreceptors.Vis. Neurosci. 4, 43–52.

    PubMed  CAS  Google Scholar 

  100. Zawislka J. B., Derbiszewska T., Sek B., and Nowak J. Z. (1995) Dopamine dependent cyclic AMP generating system in chick retina and its relation to melatonin biosynthesis.Neurochem. Int. 27, 535–543.

    Google Scholar 

  101. Iuvone M. (1996) Circadian rhythms of melatonin biosynthesis in retinal photoreceptor cells. Signal transduction, interactions with dopamine, and speculations on a role in cell survival, inRetinal Degeneration and Regeneration (Kato S., Osborne N. N., and Tamai M., eds.), Kugler, Amsterdam, pp. 3–13.

    Google Scholar 

  102. Wang T. L., Sterling P., and Vardi N. (1997) Mammalian photoreceptors express IP3 receptor type I and phospholipase C-β4.Invest. Ophthalmol. Vis. Sci. 38, S319.

    Google Scholar 

  103. Peng Y. W., Rhee S. G., Yu W. P., Ho Y. K., Schoen T., Chader G. J., and Yau K. W. (1997) Identification of components of a phosphoinositide signaling pathway in retinal rod outer segments.Proc. Natl. Acad. Sci. USA 94, 1995–2000.

    PubMed  CAS  Google Scholar 

  104. Kemali M., Monteleone P., Maj M., Milci N., and Kemali D. (1989) Lithium decreases retinal melatonin levels in the frog.Neurosci. Lett. 96, 157–162.

    Google Scholar 

  105. Schorderet M. (1997) Lithium inhibition of cyclic AMP accumulation induced by dopamine in isolated retinae of the rabbit.Biochem. Pharmacol. 26, 167–170.

    Google Scholar 

  106. Remé C. E., Braschler U., Wirz-Justice A., and Munz K. (1990) Disk shedding in the rat retina: lithium dampens the circadian rhythm but potentiates the light response.Brain Res. 523, 167–170.

    PubMed  Google Scholar 

  107. Wirz-Justice A., Remé C., Prünte A., Heinen U., Graw P., and Urner U. (1997) Lithium decreases retinal sensitivity, but this is not cumulative with years of treatment.Biol. Psychiatry 41, 743–746.

    PubMed  CAS  Google Scholar 

  108. Longoni B., Demontis G. C., Bisti S., Marchiafava P. L., and Cervetto L. (1994) D4 dopamine receptors negatively coupled to adenylate cyclase block the hyperpolarization activated current in mammalian rod photoreceptors.Neurosci. Abst. 397, 6.

    Google Scholar 

  109. Akopian A. and Witkovsky P. (1996) D2 dopamine receptor-mediated inhibition of a hyperpolarization activated current in rod photoreceptors.J. Neurophysiol. 76, 1828–1835.

    PubMed  CAS  Google Scholar 

  110. Shulman L. M. and Fox D. A. (1996) Dopamine inhibits mammalian photoreceptor Na+,K+-ATPase activity via a selective effect on the α3-isozyme.Proc. Natl. Acad. Sci. USA 93, 8034–8039.

    PubMed  CAS  Google Scholar 

  111. Witkovsky P. and Dearry A. (1992) Functional role of dopamine in the vertebrate retina.Prog. Ret. Res. 11, 247–292.

    Google Scholar 

  112. Schneider B. G., Shyjan A. W., and Levenson R. (1991) Co-localization and polarized distribution of Na,K-ATPase α3 and β2 subunits in photoreceptor cells.J. Histochem. Cytochem. 39, 507–517.

    PubMed  CAS  Google Scholar 

  113. Hare W. A., and Owen W. G. (1990) Effects of dopamine on rods and horizontal cells in the tiger salamander retina.Invest. Ophthalmol. Vis. Sci. 31, 334.

    Google Scholar 

  114. Grant G. B. and Werblin F. (1990) Dopaminergic modulation of a sustained voltage-gated calcium current in vertebrate rods of the tiger salamander.Invest. Opthalmol. Vis. Sci. 31, 176.

    Google Scholar 

  115. Knapp A.G. and Dowling J. E. (1987) Dopamine enhances excitatory amino acid-gated conductance in retinal horizontal cells.Nature 325, 437–439.

    PubMed  CAS  Google Scholar 

  116. Pfeiffer-Linn C. and Lasater E. M. (1993) Dopamine modulates in a different fashion T-type and L-type calcium current in bass retinal horizontal cells.J. Gen. Physiol. 102, 277–294.

    PubMed  CAS  Google Scholar 

  117. Kirsch M., Djamgoz M. B. A., and Wagner H. J. (1990) Correlation of spinule dynamics and plasticity of the horizontal cells spectral response in cyprinid fish retina: quantitative analysis.Cell Tissue Res. 260, 123–130.

    Google Scholar 

  118. Djamgoz M. B. A. and Wagner H. J. (1992) Localization and function of dopamine in the adult vertebrate retina.Neurochem. Int. 20, 139–191.

    PubMed  CAS  Google Scholar 

  119. Hampson E. C. G. M., Weiler R., and Vaney D. I. (1994) pH-gated dopaminergic modulation of horizontal cell gap junctions in mammalian retina.Proc. R. Soc. Lond. B 255, 67–72.

    CAS  Google Scholar 

  120. Teranishi T., Negishi K., and Kato S. (1983) Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina.Nature 301, 243–246.

    PubMed  CAS  Google Scholar 

  121. Piccolino M., Neyton J., and Gerschenfeld H. M. (1984) Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3′∶5′-monophosphate in horizontal cells of turtle retina.J. Neurosci. 4, 2477–2488.

    PubMed  CAS  Google Scholar 

  122. Lasater E. M. and Dowling J. E. (1985) Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells.Proc. Natl. Acad. Sci. USA 82, 3025–3029.

    PubMed  CAS  Google Scholar 

  123. Lasater E. M. (1987) Retinal horizontal cell gap junctional conductance is modulated by dopamine through a cyclic AMP-dependent protein kinase.Proc. Natl. Acad. Sci. USA 84, 7319–7323.

    PubMed  CAS  Google Scholar 

  124. Piccolino M., De Montis G., Witkovsky P., Strettoi E., Cappagli G. C., Porceddu M. L., De Montis M. G., Pepitoni S., Biggio G., Meller E., and Bohmaker K. (1989) Involvement of D1 and D2 dopamine receptors in the control of horizontal cell electrical coupling in the turtle retina.Eur. J. Neurosci. 1, 247–256.

    PubMed  Google Scholar 

  125. Heidelberg R. and Matthews G. (1994) Dopamine enhances Ca2+ responses in synaptic terminals of retinal bipolar neurons.NeuroReport 5, 729–732.

    Google Scholar 

  126. Yazulla S. and Zucker C. L. (1988) Synaptic organization of dopaminergic interplexiform cells in the goldfish retina.Vis. Neurosci. 1, 13–29.

    PubMed  CAS  Google Scholar 

  127. Gillette M. A. and Dacheux R. F. (1994) GABA-and glycine-activated currents in the rod bipolar cell of the rabbit retina.J. Neurophysiol. 74, 856–875.

    Google Scholar 

  128. Kolb H., Cuenca N., Wang H. H., and De Korver L. (1990) The synaptic organization of the dopaminergic amacine cell in the cat retina.J. Neurocytol. 19, 343–366.

    PubMed  CAS  Google Scholar 

  129. Strettoi E., Raviola E., and Dacheux R. F. (1992) Synaptic connections of the narrow-field, bistratified rod amacrine cell (AII) in the rabbit retina.J. Comp. Neurol. 325, 152–168.

    PubMed  CAS  Google Scholar 

  130. Kosaka J. and Fukuda Y. (1997) Cellular localization of PKCα and PKCβ in the rat retina revealed by immunohistochemistry and in situ hybridization histochemistry.Invest. Ophthalmol. Vis. Sci. 38, S49.

    Google Scholar 

  131. Wood J. P. M., McCord R. J., and Osborne N. N. (1997) Retinal protein kinase C.Neurochem. Int. 30, 119–136.

    PubMed  CAS  Google Scholar 

  132. Kolb H. and Zhang L. (1997) Immunostaining with antibodies against protein kinase C isoforms in the fovea of the monkey retina.Micr. Res. Tech. 36, 57–75.

    CAS  Google Scholar 

  133. Vaquero C. F., Velasco A. and de la Villa P. (1996) Protein kinase C localization in the synaptic terminal of rod bipolar cells.Neuro Report 7, 2176–2180.

    CAS  Google Scholar 

  134. Versaux-Botteri C., Simon A., Vigny A., and Nguyen-Legros J. (1987) Existence d'une immunoréactivité au GABA dans les cellules amacrines dopaminergiques de la rétine de rat.C. R. Acad. Sci. Paris D 305, 381–386.

    CAS  Google Scholar 

  135. Wässle H. and Chun M. H. (1988) Dopaminergic and indoleamine-accumulating amacrine cells express GABA-like immunoreactivity in the cat retina.J. Neurosci. 8, 3383–3394.

    PubMed  Google Scholar 

  136. Wulle I. and Wagner H. J. (1990) GABA and tyrosine hydroxylase immunocytochemistry reveal different patterns of colocalization in retinal neurones of various vertebrates.J. Comp. Neurol. 296, 173–178.

    PubMed  CAS  Google Scholar 

  137. Young H. M. (1994) Co-localisation of GABA and tyrosine hydroxylase-like immunoreactivitites in amacrine cells of the rabbit retina.Vision Res. 34, 995–999.

    PubMed  CAS  Google Scholar 

  138. Nguyen-Legros I., Versaux-Botteri C., and Savy C. (1997) Dopaminergic and GABAergic retinal cell populations in mammals.Micr. Res. Tech. 36, 26–42.

    CAS  Google Scholar 

  139. Hokoç J. N. and Mariani A. P. (1987) Tyrosine hydroxylase immunoreactivity in the rhesus monkey reveals synapses from bipolar cells to dopaminergic amacrine cells.J. Neurosci. 7, 2785–2793.

    PubMed  Google Scholar 

  140. Pourcho R. G. (1982) Dopaminergic amacrine cell in the cat retina.Brain Res. 252, 101–111.

    PubMed  CAS  Google Scholar 

  141. Pycock C. J. and Smith L. F. P. (1983) Interactions of dopamine and the release of [3H]-taurine and [3H]-glycine from the isolated retina of the rat.Brit. J. Pharmacol. 78, 395–404.

    CAS  Google Scholar 

  142. Kolb H. and Famiglietti V. (1974) Rod and cone pathways in the inner plexiform layer of cat retina.Science 186, 47–49.

    PubMed  CAS  Google Scholar 

  143. Pourcho R. G. and Goebel D. J. (1985) Immunocytochemical demonstration of glycine in retina.Brain Res. 348, 339–342.

    PubMed  CAS  Google Scholar 

  144. Voigt T. and Wässle H. (1987) Dopaminergic innervation of AII amacrine cells in mammalian retina.J. Neurosci. 7, 4115–4128.

    PubMed  CAS  Google Scholar 

  145. Hampson E. C. G. M., Vaney D. I., and Weiler R. (1992) Dopaminergic modulation of gap junction permeability between amcrine cells in mammalian retina.J. Neurosci. 12, 4911–4922.

    PubMed  CAS  Google Scholar 

  146. Dubocovich M. L. and Weiner D. M. (1981) Modulation of the stimulation evoked release of [3H]dopamine in the rabbit retina.J. Pharmacol. Exp. Ther. 224, 634–639.

    Google Scholar 

  147. Hadjiconstantinou M., Krajnc D., Rossetti Z., and Neff N. H. (1990) Modulation of dopamine metabolism in the retina via dopamine D2 receptors.Brain Res. 533, 20–23.

    PubMed  CAS  Google Scholar 

  148. Cohen J., Iuvone P. M., and Neff N. H. (1981) Neuroleptic drugs activate tyrosine hydroxylase of retinal amacrine cells.J. Pharmacol. Exp. Ther. 218, 390–394.

    PubMed  CAS  Google Scholar 

  149. Hadjiconstantinou M., Qu Z. X., and Neff N. H. (1991) Differential changes of retina dopamine binding sites and adenylyl responses following 6-hydroxydopamine treatment.Brain Res. 538, 193–195.

    PubMed  CAS  Google Scholar 

  150. Negishi K., Kato S., Teranishi T. (1988) Dopamine cells and rod bipolar cells contain protein kinase C-like immunoreactivity in some vertebrate retinas.Neurosci. Lett. 94, 247–262.

    PubMed  CAS  Google Scholar 

  151. Rossetti Z. L., Silvia C. P., Krajnc D., Neff N. H., and Hadjiconstantinou M. (1990) Aromatic L-amino acid decarboxylase is modulated by D1 dopamine receptors in rat retina.J. Neurochem. 54, 787–791.

    PubMed  CAS  Google Scholar 

  152. Nguyen-Legros J., Krieger M., and Simon A. (1994) Immunohistochemical localization of L-DOPA and aromatic L-amino acid-decarboxylase in the rat retina.Invest. Ophthalmol. Vis. Sci. 37, 2906–2915.

    Google Scholar 

  153. Hensler J. G. and Dubocovich M. L. (1986) D1-dopamine receptor activation mediates [3H]-acetylcholine release from rabbit retina.Brain Res. 398, 407–412.

    PubMed  CAS  Google Scholar 

  154. Yeh H. H., Battelle B. A., and Puro D. G. (1984) Dopamine regulates synaptic transmission mediated by cholinergic neurons of the rat retina.Neuroscience 13, 901–910.

    PubMed  CAS  Google Scholar 

  155. Tsai W. H. and Puro D. G. (1986) Dopamine modulates evoked transmission at cholinergic synapses formed by rat retinal neurons with muscle cells.Brain Res. 380, 375–378.

    PubMed  CAS  Google Scholar 

  156. Masland R. H. (1988) Amacrine cells.Trends Neurosci. 11, 405–410.

    PubMed  CAS  Google Scholar 

  157. Hensler J. G., Cotterel D. J., and Dubocovich M. L. (1987) Pharmacological and biochemical characterization of the D1 dopamine receptor mediating acetylcholine release in rabbit retina.J. Pharmacol. Exp. Ther. 243, 857–867.

    PubMed  CAS  Google Scholar 

  158. Feigenspan A. and Bormann J. (1994) Facilitation of GABAergic signaling in the retina by receptors stimulating adenylate cyclase.Proc. Natl. Acad. Sci. USA 91, 10,893–10,897.

    CAS  Google Scholar 

  159. O'Brien D. R. and Dowling J. E. (1985) Dopaminergic regulation of GABA release from the intact goldfish retina.Brain Res. 360, 41–50.

    PubMed  Google Scholar 

  160. Kolb H., Nelson R., and Mariani A. (1981) Amacrine cells, bipolar cells and ganglion cells of the cat retina.Vis. Res. 21, 1081–1114.

    PubMed  CAS  Google Scholar 

  161. Thier P. and Adler V. (1984) Action of iontophoretically applied dopamine on cat retinal ganglion cells.Brain Res. 292, 109–121.

    PubMed  CAS  Google Scholar 

  162. Ikeda H., Priest T. D., Robbins J., and Wakakura K. (1986) Silent dopaminergic synapse at feline retinal ganglion cells?Clin. Vis. Sci. 1, 25–38.

    Google Scholar 

  163. Jensen R. J. and Daw N. W. (1984) Effects of dopamine antagonists on receptive fields of brisk cells and directionally selective cells in the rabbit retina.J. Neurosci. 4, 2972–2985.

    PubMed  CAS  Google Scholar 

  164. Jensen R. J. and Daw N. W. (1986) Effects of dopamine and its antagonists on the receptive field properties of ganglion cells in the rabbit retina.Neuroscience 17, 837–856.

    PubMed  CAS  Google Scholar 

  165. Maguire G. and Hamasaki D. I. (1994) The retinal dopamine network alters the adaptational properties of retinal ganglion cells in the cat.J. Neurophysiol. 72, 730–741.

    PubMed  CAS  Google Scholar 

  166. Robbins J., Wakakura K., and Ikeda H. (1988) Noradrenaline action on cat retinal ganglion cells is mediated by dopamine D(2) receptors.Brain Res. 438, 52–60.

    PubMed  CAS  Google Scholar 

  167. Liu Y. and Lasater E. M. (1994) Calcium current in turtle retinal ganglion cells. 2. Dopamine modulation via a cyclic AMP-dependent mechanism.J. Neurophysiol. 71, 743–752.

    PubMed  CAS  Google Scholar 

  168. Guenther E., Witsch V., and Zrenner E. (1994) Inhibitory action of haloperidol, spiperone and SCH23390 on calcium currents in rat retinal ganglion cells.Neuro Report 5, 1373–1376.

    CAS  Google Scholar 

  169. Perry V. H. (1982) The ganglion cell layer of the mammalian retina.Prog. Ret. Res. 1, 53–80.

    Google Scholar 

  170. Morgan I. G., Boelen M. K., and Miethke P. (1995) Pineal activity is under the control of retinal D1-dopaminergic pathways.NeuroReport 6, 446–448.

    PubMed  CAS  Google Scholar 

  171. Nguyen-Legros J., Durand J., and Simon A. (1992) Catecholamine cell types in the human retina.Clin. Vis. Sci. 7, 435–447.

    Google Scholar 

  172. Savy C., Moussafi F., Durand J., Yelnik J., Simon A., and Nguyen-Legros J. (1995) Distribution and spatial geometry of dopamine interplexiform cells in the retina. II. External arborizations in the adult rat and monkey.J. Comp. Neurol. 355, 392–404.

    PubMed  CAS  Google Scholar 

  173. Ikeda H., Priest T. D., Robbins J., and Wakakura K. (1986) Silent dopaminergic synapse at feline retinal ganglion cells?Clin. Vis. Sci. 1, 25–38.

    Google Scholar 

  174. Vaney D. (1994) Patterns of neuronal coupling in the retina.Prog. Ret. Eye Res. 13, 301–355.

    Google Scholar 

  175. Reichenbach A. and Eberhardt W. (1988) Cytotopographical specialization of enzymatically isolated rabbit retinal Müller (glial) cells: K+ conductivity of the cell membrane.Glia 1, 191–197.

    PubMed  CAS  Google Scholar 

  176. Biederman B., Fröhlich E., Grosche J., Wagner H. J., and Reichenbach A. (1995) Mammalian Müller (glial) cells express functional D2 dopamine receptors.Neuro Report 6, 609–612.

    Google Scholar 

  177. Huff, R. M. (1996) Signal transduction pathways modulated by the D2 subfamily of dopamine receptors.Cell. Signal. 8, 453–459.

    PubMed  CAS  Google Scholar 

  178. Meister B., Arvidsson U., Hemmings H. C. Jr., Greengard P., and Hökfelt T. (1991) Dopamine-and adenosine-3′: 5′-monophosphate (cAMP)-regulated phosphoprotein of Mr 32,000 (DARPP-32) in the retina of cat, monkey and human.Neurosci. Lett. 131, 66–70.

    PubMed  CAS  Google Scholar 

  179. Rowland J. M., Potter D. E., and Reiter R. J. (1981) Circadian rhythm in intraocular pressure: a rabbit model:Curr. Eye Res. 1, 169–173.

    PubMed  CAS  Google Scholar 

  180. Brubaker R. F. (1991) Flow of aqueous humor in humans.Invest. Ophthalmol. Vis. Sci. 32, 3145–3166.

    PubMed  CAS  Google Scholar 

  181. Moore C. G., Johnson E. C., and Morrison J. C. (1996) Circadian rhythm of intraocular pressure in the rat.Curr. Eye Res. 15, 185–191.

    PubMed  CAS  Google Scholar 

  182. Liu J. H. K. and Dacus A. C. (1991) Aqueous humor cyclic AMP and circadian elevation of intraocular pressure in rabbits.Curr. Eye Res. 10, 1175–1177.

    PubMed  CAS  Google Scholar 

  183. Kiuchi Y. and Gregory D. S. (1992) Rabbits have a circadian rhythm of aqueous humor cyclic AMP.Curr. Eye Res. 11, 935–938.

    PubMed  CAS  Google Scholar 

  184. Potter D. E. (1995) Do dopamine and dopamine receptors have roles in modulating function in the anterior segment? The evidence.Prog. Ret. Eye Res. 15, 103–111.

    Google Scholar 

  185. Nguyen-Legros J. (1996) Retinal dopamine: basic mechanisms and clinical implications, inCNS Neurotransmitters and Neuromodulators, Dopamine. (Stone T.W., ed.), CRC, Boca Raton, FL, pp. 233–250.

    Google Scholar 

  186. Cooper R. L., Constable I. J., and Davidson L. (1994) Catecholamines in aqueous humor of glaucoma patients.Aust. J. Ophthalmol. 12, 345–349.

    Google Scholar 

  187. Mancino R., Cerulli L., Ricci A., and Amenta F. (1992) Direct demonstration of dopamine D1-like receptor sites in the ciliary body of the rabbit eye by light microscope autoradiography.Naunyn-Schmiedeberg's Arch. Pharmacol. 346, 644–648.

    CAS  Google Scholar 

  188. Green K., Hensley A., and Lollis G. (1979) Dopamine stimulation of passive permeability and secretion in the isolated ciliary epithelium.Exp. Eye Res. 29, 423–427.

    PubMed  CAS  Google Scholar 

  189. Prünte C. and Flammer J. (1995) The novel dopamine D-1 antagonist and D-2 agonist, SDZ GLC-756, lowers IOP in normal human volunteers and glaucoma patients.Ophthalmology 102, 1291–1297.

    PubMed  Google Scholar 

  190. Prünte C., Nuttli I., and Markstein R. (1996) Topical SDZ GLC-756, a novel dopamine D-1 antagonist and D-2 agonist, lowers intraocular pressure in conscious rabbits.Jap. J. Ophthalmol. 40, 167–173.

    Google Scholar 

  191. Lograno M. D., Daniele E., and Govoni S. (1990) Biochemical and functional evidence for the presence of dopamine D1 receptors in the bovine ciliary body.Exp. Eye Res. 51, 495–501.

    PubMed  CAS  Google Scholar 

  192. Stone R. A., Laties A. M., Hemmings H. C., Ouimet C. C., and Greengard P. (1986) DARPP-32 in the ciliary epithelium of the eye: a neurotransmitter regulated phosphoprotein of brain localized to secretory cells.J. Histochem. Cytochem. 34, 1465–1986.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen-Legros, J., Versaux-Botteri, C. & Vernier, P. Dopamine receptor localization in the mammalian retina. Mol Neurobiol 19, 181–204 (1999). https://doi.org/10.1007/BF02821713

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02821713

Index Entries

Navigation