Skip to main content
Log in

Rotational relaxation rate of 1,6-diphenyl-1,3,5-hexatriene in cytoplasmic membranes ofBacillus subtilis. A new model of heterogeneous rotations

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The temperature dependence of fluorescence anisotropy, lifetime and differential tangent of 1,6-diphenyl-1,3,5-hexatriene (DPH) and its polar trimethylammonium derivative (TMA-DPH) were investigated in cytoplasmic membranes ofBacillus subtilis. The fluorescence parameters were compared in the two types of membranes prepared from bacteria cultivated at 20 and 40°C. Steady-state anisotropy measurements showed that within a broad range of temperatures, membranes cultivated at 20°C exhibit significantly lower values than those prepared from cells cultivated at 40°C. The temperature dependence of lifetime and differential tangent measurements (differential polarized phase fluorimetry) were fully consistent with steady-state anisotropy data of both DPH and TMA-DPH. The low anisotropy values in the case of TMA-DPH could be explained by a shorter lifetime and higher temperature-induced decrease as compared with DPH. Surprisingly, the temperature dependence of rotational rateR calculated according to the model of hindered rotations (Lakowicz 1983) gave misleading results. When increasing the temperature from 5 to 25°C, a marked drop of rotational relaxation rate was observed. The minimumR values were measured between 25 and 30°C and further increase of temperature (up to 60°C) was reflected as increase of theR values. Therefore, a new model of “heterogeneous rotations” was developed. This model assumes that even at low temperatures (approaching 0°C) where the differential tangent reaches zero, a fraction of fast rotating molecules exists. The ratio between fast and slowly rotating molecules may be expressed by this model, the newly calculated rotational rates are fully consistent with anisotropy, lifetime and differential tangent measurements and represent the monotonically increasing function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bohin J.P., Bohin A., Schaeffer P.: Increased nitrate reductase activity as a sign of membrane alternation in early blocked asporogenous mutants ofBacillus subtilis.Biochimie 58, 99–108 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Butterworth P.H.V., Bloch K.: Comparative aspects of fatty acid synthesis inBacillus subtilis andEscherichia coli.Eur. J. Biochem. 12, 496–501 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Cossins A.R.: Adaptation of biological membranes to temperature. The effect of temperature acclimation of goldfish upon the viscosity of synaptosomal membranes.Biochim. Biophys. Acta 470, 395–411 (1976).

    Google Scholar 

  • Cossins A.R., Sinensky M.: Adaptation of membranes to temperature, pressure and exogenous lipids, pp. 1–20 inPhysiology of Membrane Fluidity, Vol. II (M. Shinitzki, Ed.). CRC Press, Boca Raton (Florida) 1984.

    Google Scholar 

  • Faucon J.F., Lakowicz J.R.: Anisotropy decay of diphenylhexatriene in mellitin-phospholipid complexes by multifrequency phase-modulation fluorometry.Arch. Biochem. Biophys. 252, 245–258 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Finne G., Matches J.R.: Spin-labelling studies on the lipids of psychrophilic, psychrotropic and mesophilic bacteria.J. Bacteriol. 125, 211–219 (1976).

    PubMed  CAS  Google Scholar 

  • Genz A., Holzwarth R.K.: Dynamic fluorescence measurements on the main phase transition of dipalmitoylphosphatidylcholine vesicles.Eur. Biophys. J. 13, 323–330 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz J.R., Prendergast F.G.: Quantitation of hindered rotations of diphenylhexatriene in lipid bilayers by differential polarized phase fluorometry.Science 200, 1399–1401 (1978a).

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz J.R., Prendergast F.G.: Detection of hindered rotations of 1,6-diphenyl-1,3,5-hexatriene in lipid bilayers by differential phase fluorometry.Biophys. J. 24, 213–226 (1978b).

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz J.R., Prendergast F.G., Hogen D.: Differential polarized phase fluorometric investigation of diphenylhexatriene in lipid bilayers. Quantitation of hindered depolarizing rotations.Biochemistry 18, 508–519 (1979a).

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz J.R., Prendergast F.G., Hogen D.: Fluorescence anisotropy measurements under oxygen quenching conditions as a method to quantify the depolarizing rotations of fluorophores. Application to diphenylhexatriene in isotropic solvents and in lipid bilayers.Biochemistry 18, 520–527 (1979b).

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz J.R.:Principles of Fluorescence Spectroscopy, pp. 156–188. Plenum Press, New York 1983.

    Google Scholar 

  • Lakowicz J.R., Cherek H., Maliwal B.P.: Time-resolved fluorescence anisotropies of diphenylhexatriene and perylene in solvents and lipid bilayers obtained from multifrequency phase-modulation fluorometry.Biochemistry 24, 376–383 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Lentz B., Barenholz Y., Thompson T.E.: Fluorescence depolarization studies of phase transition and fluidity in phospholipid bilayers. 1. Single component phosphatidylcholine liposomes.Biochemistry 15, 4521–4528 (1976a).

    Article  PubMed  CAS  Google Scholar 

  • Lentz B., Barenholz Y., Thompson T.E.: Fluorescence depolarization studies of phase transition and fluidity in phospholipid bilayers. 2. Two-component phosphatidylcholine liposomes.Biochemistry 15, 4529–4536 (1976b).

    Article  PubMed  CAS  Google Scholar 

  • McElhaney R.N.: The biological significance of alternations in fatty acid composition of microbial membrane lipids in response to changes in environmental temperature, pp. 255–281 inExtreme Environments: Mechanism of Microbial Adaptation (Heinrich M.R., Ed.). Academic Press, New York 1976.

    Google Scholar 

  • Melchior D.L.: Lipid phase transitions and regulation of membrane fluidity in procaryotes, pp. 263–316 inMicrobial Membrane Lipid: Current Topics in Membrane and Transport, Vol. 17 (Razin S., Rottem S., Eds). Academic Press, New York 1983.

    Google Scholar 

  • De Mendoza D., Cronnan J.E.: Thermal regulation of membrane lipid fluidity in bacteria.Trends Biochem. Sci. 8, 49–52 (1983).

    Article  Google Scholar 

  • Prendergast F.G., Haugland R.P., Callahan P.J.: 1-(4-trimethyl-aminophenyl)-6-phenylhexa-1,3,5-triene synthesis, fluorescence properties and use as fluorescence probe of lipid bilayers.Biochemistry 20, 7333–7338 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Ray P.H., White D.C., Brock T.D.: Effect of temperature on the fatty acid composition ofThermus aquaticus.J. Bacteriol. 106, 25–30 (1971).

    PubMed  CAS  Google Scholar 

  • Russel N.J.: Mechanism of thermal adaptation in bacteria: Blueprints for survival.Trends Biochem. Sci. 9, 108–112 (1984).

    Article  Google Scholar 

  • Shintzky M., Barenholz Y.: Dynamics of the hydrocarbon layer in liposomes of lecitin and sphingomyelin containing diethylphosphate.J. Biol. Chem. 249, 2652–2658 (1974).

    Google Scholar 

  • Shinitzky M., Barenholz Y.: Fluidity parameters of lipid regions determined by fluorescence polarization.Biochim. Biophys. Acta 515, 367–394 (1978).

    PubMed  CAS  Google Scholar 

  • Shinitzky M.: Membrane fluidity and cellular functions, pp. 1–51 inMembrane Fluidty, Vol. I (M. Shinitzki, Ed.). CRC Press, Boca Raton (Florida) 1984.

    Google Scholar 

  • Sinensky M.: Homeoviscous adaptation— a homeostatic process that regulates the viscosity of membrane lipids inEscherichia coli.Proc. Nat. Acad. Sci. USA 71, 522–525 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Svobodová J., Svoboda P.: Cytoplasmic membrane fluidity measurements on intact living cells ofBacillus subtilis by fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene.Folia Microbiol. 33, 1–9 (1988a).

    Google Scholar 

  • Svobodová J., Svoboda P.: Membrane fluidity inBacillus subtilis. Physical change and biological adaptation.Folia Microbiol. 33, 161–169 (1988b).

    Google Scholar 

  • Svobodová J., Julák J., Pilař J., Svoboda P.: Membrane fluidity inBacillus subtilis. Validity of the principle of homeoviscous adaptation.Folia Microbiol. 33, 170–177 (1988c).

    Google Scholar 

  • Thompson G.A.: Mechanism of homeoviscous adaptation in membranes, pp. 33–42. inCellular Aclimatization to Environmental Change (A.P. Cossins, P. Sheterline, Eds). CRC Press, Boca Raton (Florida) 1983.

    Google Scholar 

  • Wakayma N., Oshima T.: Membrane properties of extreme thermophile. I. Detection of the phase transition and its dependence on growth temperature.J. Biochem. 83, 1687–1692 (1979).

    Google Scholar 

  • Weber G.: Theory of differential phase fluorometry—detection of anisotropic molecular rotations.J. Chem. Phys. 66, 4081–4091 (1977).

    Article  CAS  Google Scholar 

  • Yang L.L., Haug A.: Structure of membrane lipids and physico-biochemical properties of the plasma membrane fromThermoplasma acidophilum, adapted to growth at 37°C.Biochim. Biophys. Acta 573, 308–320 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konopásek, I., Svobodova, J., Toptygin, D.D. et al. Rotational relaxation rate of 1,6-diphenyl-1,3,5-hexatriene in cytoplasmic membranes ofBacillus subtilis. A new model of heterogeneous rotations. Folia Microbiol 35, 371–383 (1990). https://doi.org/10.1007/BF02821406

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02821406

Keywords

Navigation