Skip to main content
Log in

Flow characteristics and required control algorithm of an implantable centrifugal left ventricular assist device

  • Originals
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Summary

As the clinical application of LVADs has increased, attempts have been made to develop smaller, less expensive, more durable and efficient implantable devices using rotary blood pumps. Since chronic circulatory support with implantable continuous-flow LVADs will be established in the near future, we need to determine the flow characteristics through an implantable continuous-flow LVAD. This study describes the flow characteristics through an implantable centrifugal blood pump as a left ventricular assist device (LVAD) to obtain a simple non-invasive algorithm to control its assist flow rate adequately. A prototype of the completely seal-less and pivot bearing-supported centrifugal blood pump was implanted into two calves, bypassing from the left ventricle to the descending aorta. Device motor speed, voltage, current, flow rate, and aortic blood pressure were monitored continuously. The flow patterns revealed forward flow in ventricular systole and backward flow in diastole. As the pump speed increased, an end-diastolic notch became evident in the flow profile. Although the flow rate (Q [1/min]) and rotational speed (R [rpm]) had a linear correlation (Q=0.0042R−5.159;r=0.96), this linearity was altered after the end-diastolic notch was evident. The end-diastolic notch is considered to be a sign of the sucking phenomenon of the centrifugal pump. Also, although the consumed current (I [A]) and flow rate had a linear correlation (I=0.212Q+0.29;r=0.97), this linearity also changed after the end-diastolic notch was evident. Based upon the above findings, we propose a simple algorithm to maintain submaximal flow without inducing sucking. To maintain the submaximal flow rate without measuring flow rate, the sucking point is determined by monitoring consumed current according to gradual increases in voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. McCarthy PM (1995) Heart Mate implantable left ventricular assist device: Bridge to transplantation and future applications. Ann Thorac Surg 59:S46–51

    Article  PubMed  CAS  Google Scholar 

  2. Kormos RL, Gasior TK, Kawai A, Pham SM, Murali S, Hattler BG, Griffith BP (1996) Transplant candidate’s clinical status rather than right ventricular function defines need for univentricular versus biventricular support. J Thorac Cardiovasc Surg 111:773–783

    Article  PubMed  CAS  Google Scholar 

  3. Nakatani T, Sasako Y, Kumon K, Nagata S, Kosakai Y, Isobe F, Nakano K, Kobayashi J, Eishi K, Takano H, Kito Y, Kawashima Y (1995) Long-term circulatory support to promote recovery from profound heart failure. ASAIO J 41:M526–530

    Article  PubMed  CAS  Google Scholar 

  4. Frazier OH, Benedict CR, Radovancevic B, Bick RJ, Capek P, Springer WE, Macris MP, Delgado R, Buja LM (1996) Improved left ventricular function after chronic left ventricular unloading. Am Thorac Surg 62:675–682

    Article  CAS  Google Scholar 

  5. Nosé Y (1996) FDA approval of clinical studies on left ventricular assist system for its therapeutic application. Artif Organs 20:283

    Article  PubMed  Google Scholar 

  6. Ohara Y, Makinouchi K, Glueck J, Sutherland B, Shimono T, Naito K, Tasai K, Orime Y, Takatani S, Nosé Y (1994) Development and evaluation of antithrombogenic centrifugal pump; The Baylor C-Gyro pump eccentric inlet port model. Artif Organs 18:673–679

    PubMed  CAS  Google Scholar 

  7. Golding LAR, Smith WA, Bodmann DR (1996) The Cleveland Clinic rotodynamic pump program. Artif Organs 20:481–484

    Article  PubMed  CAS  Google Scholar 

  8. Taenaka Y, Wakisaka Y, Masuzawa T, Tatsumi E, Toda K, Miyazaki K, Eya K, Baba Y, Nakatani T, Ohno T, Nishimura T, Takano H (1996) Development of a centrifugal pump with improved antithrombogenicity and hemolytic property for chronic circulatory support. Artif Organs 20:491–496

    PubMed  CAS  Google Scholar 

  9. Nishimura K, Park CH, Akamatsu T, Yamada T, Ban T (1996) Development of a magnetically suspended centrifugal pump as a cardiac assist device for long-term application. ASAIO J 42:68–71

    Article  PubMed  CAS  Google Scholar 

  10. Bearnson GB, Malsen EH, Olsen DB, Allaire PE, Khanwilkar PS, Long JW, Kim HC (1996) Development of a prototype magnetically suspended rotor ventricular assist device. ASAIO J 42:275–281

    Article  PubMed  CAS  Google Scholar 

  11. Kawahito K, Benkowski R, Otsubo S, Rosenbaum B, Moreland R, Noon GP, Nosé Y, DeBakey ME (1996) Ex vivo evaluation of the NASA/DeBakey axial flow ventricular assist device. ASAIO J 42:M754–757

    Article  PubMed  CAS  Google Scholar 

  12. Konishi H, Antaki JF, Litwak P, Kameneva M, Yamazaki k, Mache M, Kerrigan JP, Mandarino WA, Butler KC, Borovetz HS, Kormos RL (1996) Long-term animal survival with an implantable axial flow pump as a left ventricular assist device. Artif Organs 20:124–127

    PubMed  CAS  Google Scholar 

  13. Kaplon RJ, Oz MC, Kwiatkowski PA, Levin HR, Shah AS, Jarvic RK, Rose EA (1996) Miniature axial flow pump for ventricular assistance in children and small adults. J Thorac Cardiovasc Surg 111:13–18

    Article  PubMed  CAS  Google Scholar 

  14. Snyder AJ, Rosenberg G, Pierce WS (1992) Noninvasive control of cardiac output for alternatively ejecting dual-pusherplate pumps. Artif Organs 16:189–194

    Article  PubMed  CAS  Google Scholar 

  15. Schima H, Trubel W, Moritz A, Wieselthaler G, Stöhr HG, Thoma H, Losert U, Wolner E (1992) Noninvasive monitoring of rotary blood pumps: Necessity, possibility, and limitations. Artif Organs 16:195–202

    Article  PubMed  CAS  Google Scholar 

  16. Ohara Y, Sakuma I, Makinouchi K, Damm G, Glueck J, Mizuguchi K, Naito K, Tasai K, Orime Y, Takatani S, Noon GP, Nosé Y (1993) Baylor Gyro Pump: A completely seal-less centrifugal pump aiming for long-term circulatory support. Artif Organs 17:599–604

    Article  PubMed  CAS  Google Scholar 

  17. Ohara Y, Makinouchi K, Orime Y, Damm G, Glueck J, Mizuguchi K, Naito K, Tasai K, Takatani S, Noon GP, Nosé Y (1994) An ultimate, compact, seal-less centrifugal ventricular assist device: Baylor C-Gyro Pump. Artif Organs 18:17–24

    PubMed  CAS  Google Scholar 

  18. Nakazawa T, Makinouchi K, Ohara Y, Ohtsubo S, Kawahito K, Tasai K, Shimono T, Benkowski R, Damm G, Takami Y, Glueck J, Savage A, Takatani S, Noon GP, Nosé Y (1996) Development of a pivot bearing-supported seal-less centrifugal pump for ventricular assist device. Artif Organs 20:485–490

    PubMed  CAS  Google Scholar 

  19. Schima H, Schmallegger H, Huber L, Birgmann I, Rindl C, Schmidt C, Roschal K, Wieselthaler G, Trubel W, Lower U, Wolner E (1995) An implantable seal-less centrifugal pump with integrated double-disk motor. Artif Organs 19:639–643

    PubMed  CAS  Google Scholar 

  20. Konishi H, Antaki JF, Amin DV, Boston JR, Kerrigan JP, Mandarino WA, Litwak P, Yamazaki K, Mache M, Butler KC, Borovetz HS, Kormos RL (1996) Controller for an axial flow blood pump. Artif Organs 20:618–620

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takami, Y., Otsuka, G., Mueller, J. et al. Flow characteristics and required control algorithm of an implantable centrifugal left ventricular assist device. Heart Vessels 12, 92–97 (1997). https://doi.org/10.1007/BF02820872

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02820872

Key words

Navigation