Skip to main content
Log in

Cloning and expression of β-glucosidase genes inEscherichia coli andSaccharomyces cerevisiae using shuttle vector pYES 2.0

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Genes for β-glucosidase (Bgl) isolated from a genomic library of the cellulolytic bacterium,Cellulomonas biazotea, were cloned in pUC18 in itsSacI cloning site and transformed toE. coli. Ten putative recombinants showed blackening zones on esculin plates, yellow zones on pNPG plates, in liquid culture and on native polyacrylamide gel electrophoresis activity gels. They fell into three distinct groups. Three representativeE. coli clones carried recombinant plasmids designated pRM54, pRM1 and pRM17. The genes were located on 5.6-, 3.7- and 1.84-kb fragments, respectively. Their location was obtained by deletion analysis which revealed that 5.5, 3.2, and 1.8 kb fragments were essential to code for BglA, BglB, and BglC, respectively, and conferred intracellular production of β-glucosidase onE. coli. Expression of thebgl genes resulted in overproduction of β-glucosidase in the three clones. Secretion occurred into the periplasmic fractions. Three inserts carryingbgl genes from the representative recombinantE. coli were isolated withSacI ligated in the shuttle vector pYES2.0 in itsSacI site and transformed toE. coli andS. cerevisiae. The recombinant plasmids were redesignated pRPG1, pRPG2 and pRPG3 coding for BglA1, BglB1 and BglC1. The cloned genes conferred extracellular production of β-glucosidase onS. cerevisiae and enabled it to grow on cellobiose and salicin. Thegall promoter of shuttle vector pYES2.0 enabled the organisms to produce twice more β-glucosidase than that supported by thelacZ-promoter of pUC18 plasmid inE. coli. The cloned gene can be used as a selection marker for introducing recombinant plasmids in wild strains ofS. cerevisiae The enzyme produced bybgl + yeast andE. coli recombinants resembles that of the donor with respect to temperature and pH requirement for maximum activity. Other enzyme properties of the β-glucosidases fromS. cerevisiae were substantially the same as those fromC. biazotea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashfaq S.M.R., Bashir A., Rajoka M.I., Malik K.A.: Rapid zymographic technique for the localization of cellulases on nondenaturing polyacrylamide gel, pp. 77–84 inBiotechnology for Energy (K. Maliket al., Eds). Pubs. NIAB/NIBGE, Faisalabad (Pakistan) 1991.

    Google Scholar 

  • Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K.:Current Protocols in Molecular Biology, Green Publishing Associates and Wiley-John Willey & Sons, New York 1993.

    Google Scholar 

  • Barron A., May G., Berner E., Villarejo M.: Regulation of envelope protein composition during adaptation to osmotic stress inEscherichia coli.J. Bacteriol. 167, 433–438 (1986).

    PubMed  CAS  Google Scholar 

  • Beckman K.: A cautionary note on the use of certain restriction endonucleases with methylated substrates.Gene 11, 169–171 (1980).

    Article  Google Scholar 

  • Coughlan M.P., Wood T.M., Montenecourt B.S., Mandels M.: Cellulases: production, properties, and applications.Biochem. Soc. Trans. 13, 405–416 (1985).

    PubMed  CAS  Google Scholar 

  • Deshpande V., Eriksson K.-E.: 1,4-β-Glucosidase ofSporotrichum pulverulentum.Methods Enzymol. 160, 415–424 (1988).

    CAS  Google Scholar 

  • Esen A.: β-Glucosidases (over review), pp. 1–14 inβ-Glucosidases, Biochemistry and Molecular Biology (A. Esen, Ed.). American Chemical Society, Washington (DC) 1993.

    Google Scholar 

  • Gadgil N.J., Daginawala H.F., Chakrabarti T., Khanna P.: Enhanced cellulase production by a mutant ofTrichoderma reesei.Enzyme. Microb. Technol. 17, 942–946 (1995).

    Article  CAS  Google Scholar 

  • Gilkes N.R., Kilburn D.G., Miller R.C., Warren R.A.J.: Bacterial cellulases.Biores. Technol. 36, 21–35 (1991).

    Article  CAS  Google Scholar 

  • Himmel M.E., Adney W.S., Fox J.W., Mitchell D.J., Baker J.O.: Isolation and characterization of two forms of β-d-glucosidase fromAspergillus niger.Appl. Biochem. Biotechnol. 39/40, 213–225 (1993).

    Google Scholar 

  • Hoh Y.K., Yeoh H.H., Tan T.K.: Isolation and characterization of β-glucosidases fromAspergillus nidulans mutant USDB 1183.World J. Microbiol. Biotechnol 9, 555–558 (1993).

    Article  CAS  Google Scholar 

  • Honda H., Saito T., Iijima S., Kobayashi T.: Molecular cloning and expression of a β-glucosidase gene fromRuminococcus albus inEscherichia coli.Enzyme Microb. Technol. 10, 559–562 (1988).

    Article  CAS  Google Scholar 

  • Kim J.H., Pack M.Y.: Overproduction of extracellular endoglucanase by genetically engineeredBacillus subtilis.Biotechnol. Lett. 15, 130–133 (1993).

    Article  Google Scholar 

  • Kubicek-Pranz E.M., Gruber F., Kubiceck C.P.: Transformation ofTrichoderma reesei with the cellobiohydrolase II gene as a means for obtaining strains with increased cellulase production and specific activity.J. Biotechnol. 20, 83–94 (1991).

    Article  CAS  Google Scholar 

  • Latif F., Rajoka M.I., Malik K.A.: Production of cellulases by thermophilic fungi grown onLeptochloa fusca straw.World J. Microbiol. Biotechnol. 11, 347–348 (1995).

    Article  CAS  Google Scholar 

  • Nakamura K., Misawa M., Kitamura K.: Cellulase genes ofCellulomonas uda CB4. 1. Cloning and expression of β-glucosidase genes inE. coli.J. Biotechnol. 3, 239–246 (1986).

    Article  CAS  Google Scholar 

  • Parvez S., Rajoka M.I., Fariha F., Malik K.A.: Cloning of endoglucanase genes fromCellulomonas biazotea intoE. coli andS. cerevisiae using shuttle vector YEp 24.Folia Microbiol. 39, 251–254 (1994).

    Article  CAS  Google Scholar 

  • Rajoka M.I., Malik K.A.: Enhanced production of cellulases byCellulomonas strains grown in media containing different cellulosic residues.Folia Microbiol. 42, 59–64 (1997).

    CAS  Google Scholar 

  • Rajoka M.I., Parvez S., Malik K.A.: Cloning of structural genes for β-glucosidase fromCellulomonas biazotea intoE. coli andSaccharomyces cerevisae using shuttle vector pBLU-D.Biotechnol. Lett. 14, 1001–1006 (1992).

    Article  CAS  Google Scholar 

  • Sami A.J., Akhtar M.W.: Purification and characterization of two low-molecular weight endoglucanases ofCellulomonas flavigena.Enzyme Microb. Technol. 15, 586–592 (1993).

    Article  CAS  Google Scholar 

  • Siddiqui K.S., Rashid M.H., Rajoka M.I.: Kinetic analysis of the active site of an intracellular β-glucosidase fromCellulomonas biazotea.Folia Microbiol. 42, 53–58 (1997).

    Article  CAS  Google Scholar 

  • Sprenger G.A., Typas M.A., Drainas C.: Genetics and genetic engineering ofZymomonas mobilis.World J. Microbiol. Biotechnol. 89, 17–24 (1993).

    Article  Google Scholar 

  • Tsujibo H., Ohtsuki T., Ho T., Yamazaki I., Miyamoto K., Sugiyama M., Inamori Y.: cloning and sequence analysis of genes encoding xylanases and acetyl xylan esterase fromStreptomyces thermoviolaceous OPC-520.Appl. Environ. Microbiol. 63, 661–664 (1997).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Rajoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajoka, M.I., Bashir, A., Hussain, S.R.A. et al. Cloning and expression of β-glucosidase genes inEscherichia coli andSaccharomyces cerevisiae using shuttle vector pYES 2.0. Folia Microbiol 43, 129–135 (1998). https://doi.org/10.1007/BF02816497

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816497

Keywords

Navigation