Skip to main content
Log in

Catecholamine-containing biodegradable microsphere implants as a novel approach in the treatment of CNS neurodegenerative disease

A review of experimental studies in DA-lesioned rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Biodegradable controlled-release microsphere systems made with the biocompatible biodegradable polyester excipient poly (dl-lactide-co-glycolide) constitute an exciting new technology for drug delivery to the central nervous system (CNS). Implantable controlled-release microspheres containing dopamine (DA) or norepinephrine (NE) provide a novel means to compare DA- or NE-induced restitution of function in unilateral 6-hydroxydopamine lesioned rats. A suspension of 3 μL of DA- or NE-containing microspheres or empty microspheres was implanted in 2 sites of the DA denervated striatum of rats previously unilaterally lesioned with 6-hydroxydopamine. Contralateral-rotational behavior induced by apomorphine was used as an index of lesion success and, following implantation of the microspheres, also as an index of functional recovery. Interestingly, both DA- and NE-microsphere-implanted rats displayed a 30–50% reduction in the number of apomorphine-induced rotations up to 8 wk postimplantation. Rats implanted with empty microspheres did not demonstrate significant changes in contralateral rotational behavior. Behavioral studies following implantation of a mixture of DA and NE microspheres revealed an 80% decrease in the number of apomorphine induced rotations up to 4 wk. On conclusion of the studies, immunocytochemical examination revealed growth of DA and tyrosine hydroxylase immunoreactive fibers in the striatum of DA and NE microsphere-implanted rats. Functional behavior appeared to correlate with the degree of fiber growth. Preliminary electron microscopic studies showed signs of axonal sprouting in the vicinity of the implanted microspheres. No growth was noted in rats implanted with empty microspheres. This report reviews the abilities of both microencapsulated NE and DA to assure functional recovery and to promote DA fiber (re)growth in parkinsonian rats. This novel means to deliver these substances to the central nervous system could be of therapeutic usefulness in Parkinson's disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkmayer W. and Hornykiewicz O. (1961)Klin. Wochenschr. 73, 787.

    CAS  Google Scholar 

  2. Stahl S. M. (1984)J. Neural Transm. [Suppl.] 27, 123.

    Google Scholar 

  3. Bates I. P. (1984)Pharm. J. 30, 265.

    Google Scholar 

  4. Gardner C. R. (1985)Psychopharmacol. Bull.,21, 657.

    PubMed  CAS  Google Scholar 

  5. Henderson N. L. (1983) inAnnual Reports in Medicinal Chemistry (Allen R. C., ed.), Academic, New York, pp. 275–284.

    Google Scholar 

  6. Bodor N. and Simpkins J. W. (1983)Science 221, 65.

    Article  PubMed  CAS  Google Scholar 

  7. Ommaya A. K. (1984)Cancer Drug Deliv. 1, 169.

    PubMed  CAS  Google Scholar 

  8. Goldman P. N. (1982).New Engl. J. Med. 307, 286–290.

    Article  PubMed  CAS  Google Scholar 

  9. Bankiewicz K. S., Plunkett R. J., Kopin I. J., Jacobowitz D. M., London W. T., and Oldfield E. H. (1988) inTranslantation into the Mammalian CNS: Preclinical and Clinical Studies (Gash D. M. and Sladek J. R., eds.), Elsevier, Amsterdam, pp. 543–549.

    Google Scholar 

  10. Bohn M., Cupit L., Marciano F., and Gash D. M. (1987)Science 237, 913.

    Article  PubMed  CAS  Google Scholar 

  11. Dunnet S. B., Bjorklund A., Schmidt R., Stenevi U., and Iverson S. D. (1983)Acta Physiol Scand. Suppl.522, 29.

    Google Scholar 

  12. Freed W., Karoum F., Spoor E., Hoffer B., Olson L., Seiger A., and Wyatt R. (1981)Nature 292, 351.

    Article  PubMed  CAS  Google Scholar 

  13. Perlow M. J., Freed W. F., Hoffer B. J., Seiger A., Olson L., and Wyatt R. J. (1979)Science 204, 643.

    Article  PubMed  CAS  Google Scholar 

  14. Sladek J. R., Collins T. J., Haber S. N., Roth R. H., and Redmond D. E. (1986)Brain Res. Bull. 17, 809.

    Article  PubMed  CAS  Google Scholar 

  15. Strömberg I., Herrera-Marschitz M., Hultgren L., Ungerstedt U., and Olson L. (1984)Brain Res. 297, 41.

    Article  PubMed  Google Scholar 

  16. Björklund A., Lindvall O., Isacson O., Brundin P., Wictorin K., and Strecker R. E. (1987)TINS 10, 509.

    Google Scholar 

  17. Olson L., Backlund E. O., Sedvall G., Herrera-Marschitz M., Ungerstedt U., Stromberg I., Hoffer B., and Seiger A. (1984) inCatecholamines Neuropharmacology, and Central Nervous System Therapeutic Aspects, Part C. (Usdin E., Carlsson A., Dahlström A., and Engel J., eds.), Liss, New York, pp. 195–201.

    Google Scholar 

  18. Madrazo I., Drucker-Colin R., Diaz V., Martinez-Mata J., Torres C., and Becerril J. J. (1987)New Engl. J. Med.,316, 831.

    Article  PubMed  CAS  Google Scholar 

  19. Lindvall O., Brundin P., Widner H., Rehncrona S., Gustavii B., Frackowiac R., Leenders K., Sawle G., Rothwell J., Marsden D., and Bjorklund A. (1989)Science 247, 574.

    Article  Google Scholar 

  20. Aebischer P., Tresco P., Sagen J., and Winn S. (1991)Brain Res. 560, 43.

    Article  PubMed  CAS  Google Scholar 

  21. During M. J., Freese A., Sabel W. M., Deutsch A., Roth R. H., and Langer R. (1989)Ann. Neurol.,25, 351.

    Article  PubMed  CAS  Google Scholar 

  22. Freese A., Sable B., Saltzman M., During M., and Langer R. (1989)Exp. Neurol. 103, 234.

    Article  PubMed  CAS  Google Scholar 

  23. Winn S. R., Wahlberg L., Tresco P. A., and Aebischer P. (1989)Exp. Neurol. 105, 244.

    Article  PubMed  CAS  Google Scholar 

  24. Becker J. B., Robinson T. E., Barton P., Sintov A., Siden R. and Levy R. J. (1990)Brain Res. 508, 60.

    Article  PubMed  CAS  Google Scholar 

  25. Tice T. R. and Tabibi E. (1992) inTreatise on Controlled Drug Delivery (Kydonieus A., ed.) Marcel Dekker, New York, pp. 315–339.

    Google Scholar 

  26. Tice T. R. and Cowsar D. R. (1984)Pharmaceut. Technol.,November, 26.

    Google Scholar 

  27. Eldridge J., Staas J., Merulbroek J., Tice T., and Gilley R. (1991)Infection and Immunity September, 2978.

    Google Scholar 

  28. Tice T., Mason D., and Gilley R. (1989) inNovel Drug Delivery and its Therapeutic Application (Prescott L. F. and Nimmo W., eds.), Wiley, New York, pp. 223–235.

    Google Scholar 

  29. Colpaert F. (1993) inNoradrenergic Mechanisms in Parkinson's Disease (Briley M and Marien M., eds.), CRC, Boca Raton, FL, pp. 225–254.

    Google Scholar 

  30. McRae A., Hjorth S., Mason D., Dillon L., and Tice T. (1990)J. Neural. Transm. Suppl. 29, 207.

    Google Scholar 

  31. McRae A., Hjorth S., Mason D. W., Dillon L., and Tice T. R. (1991)J. Neural. Transpl. 2, 165.

    CAS  Google Scholar 

  32. McRae-Degueurce A., Hjorth S., Dillon L., Mason D., and Tice T. (1988)Neurosci. Lett 92, 303.

    Article  PubMed  CAS  Google Scholar 

  33. McRae A., Hjorth S, Dahlström A, Dillon L., Mason D., and Tice T. (1992)Mol. Chem. Neuropathol. 16, 123.

    Article  PubMed  CAS  Google Scholar 

  34. Paxinos G and Watson C. (1982)The Rat Brain in Stereotaxic Coordinates, Academic, New York.

    Google Scholar 

  35. Ungerstedt U. (1971)Acta Physiol. Scand. Suppl. 367, 69.

    CAS  Google Scholar 

  36. Ungerstedt U., Herrera-Marschitz M., and Casa-Brugue M. (1981) inApomorphine and other Dopaminomimetics Vol 1. Basic Pharmacology (Gessa G. L. and Corsini G. U., eds.), Raven, New York, pp. 85–93.

    Google Scholar 

  37. Herrera-Marschitz M. and Ungerstedt U. (1984)Eur. J. Pharmacol. 98, 165.

    Article  PubMed  CAS  Google Scholar 

  38. McRae-Degueurce A., Rosengren L., Haglid K., Augustsson I., and Dahlström A. (1988)Acta Physiol. Scand. 133, 583.

    Article  PubMed  CAS  Google Scholar 

  39. Shu S. and Fan L. (1988)Neurosci. Lett. 85, 169.

    Article  PubMed  CAS  Google Scholar 

  40. Azmitia E. C. and Segal M. (1978)J. Comp. Neurol.,179, 641.

    Article  PubMed  CAS  Google Scholar 

  41. Fiandaca M. S., Kordower J. H., Hansen J. T., Jiao S. S., and Gash D. M. (1988)Exp. Neurol. 102, 76.

    Article  PubMed  CAS  Google Scholar 

  42. Herrera-Marschitz M., Stromberg I., Olsson D., Ungerstedt U., and Olson L. (1984)Brain Res. 297, 53.

    Article  PubMed  CAS  Google Scholar 

  43. Mavridis M., Millian M., and Colpaert F. (1990)Europ. J. Pharmacol. 183, 448.

    Article  Google Scholar 

  44. Mavridis M., Colpaert F., and Millian M. (1991)Brain Res.,562, 216.

    Article  PubMed  CAS  Google Scholar 

  45. Richardson D. and Heath R. (1992)Acta Neurochirurgica 117, 124.

    Google Scholar 

  46. Felten D., Hallman H., and Jonsson G. (1982).J. Neurocytol. 11, 119.

    Article  PubMed  CAS  Google Scholar 

  47. Maeda T., Toyama M., and Shimizu N. (1974)Brain Res. 70, 515.

    Article  PubMed  CAS  Google Scholar 

  48. Pettigrew J. and Kasainatsu T. (1978)Nature 271, 761.

    Article  PubMed  CAS  Google Scholar 

  49. Pickel V., Segal M., and Bloom F. (1974).J. Comp. Neurol. 155, 43.

    Article  PubMed  CAS  Google Scholar 

  50. Tassin J., Reibaud M., Blanc G., Studler J., and Glowinski J. (1979)Neurosci.4, 1569.

    Article  CAS  Google Scholar 

  51. Mavridis M., Degryse A., Lategan M., and Colpaert F. (1991)Neurosci.41, 507.

    Article  CAS  Google Scholar 

  52. Langston W. (1985).Life Sci. 36, 201.

    Article  PubMed  CAS  Google Scholar 

  53. Hargraves R., and Freed W. J., (1987)Life Sci. 40, 959.

    Article  PubMed  CAS  Google Scholar 

  54. Furukawa Y., Furukawa S., Satoyoshi E., and Hayashi K. (1986)J. Biol. Chem. 261, 6039.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McRae, A., Ling, E.A., Hjorth, S. et al. Catecholamine-containing biodegradable microsphere implants as a novel approach in the treatment of CNS neurodegenerative disease. Mol Neurobiol 9, 191–205 (1994). https://doi.org/10.1007/BF02816119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816119

Index Entries

Navigation