Skip to main content
Log in

The weaver mutant mouse as a model of nigrostriatal dysfunction

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The weaver mutant mouse has a genetic defect that results in the loss of dopamine neurons in the nigrostriatal pathway. Striatal tyrosine hydroxylase and dopamine content are reduced by 60–70%, and dopamine uptake is reduced by as much as 95%. Deficits in all three of these striatal dopamine markers are seen as early as postnatal d 3. The striatal dopamine systems in the weaver apparently have the ability to compensate for this dopamine deficit. Thus, in the weaver, in vitro resting release, as well as amphetamine-evoked fractional release of endogenous dopamine are increased. An additional change seen in the weaver striatum is an elevated serotonin content. These alterations may play an adaptive role in attempting to compensate for the dopamine loss. In summary, the weaver mutant mouse has dramatic deficits in the nigrostriatal pathway, but also seems to develop certain adaptive mechanisms in dopaminergic and other transmitter systems that may compensate functionally for the dopamine deficit. Thus, the weaver mouse provides a unique animal model for studying naturally induced neuronal degeneration that complements those models using surgical and pharmacological protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rakic P. and Sidman R. L. (1973)J. Comp. Neurol. 152, 103–132.

    Article  PubMed  CAS  Google Scholar 

  2. Schmidt M. J., Sawyer B. D., Perry K. W., Fuller R. W., Foreman M. M., and Ghetti B. (1982)J. Neurosci. 2, 376–380.

    PubMed  CAS  Google Scholar 

  3. Gupta M., Felten D. L., and Ghetti B. (1988)Brain Res. 402, 379–382.

    Article  Google Scholar 

  4. Triarhou L. C., Norton J., and Ghetti B. (1988)Exp. Brain Res. 70, 256–265.

    Article  PubMed  CAS  Google Scholar 

  5. Ghetti B. and Triarhou L. C. (1992) inProgress in Parkinson's Disease Research, vol. 2 (Hefti F. and Weiner W. J., ed.), Futura, Kisco, NY, p. 375.

    Google Scholar 

  6. Lane J. D., Nadi N. S., McBride W. J., Aprison M. H., and Kusano K. (1977)J. Neurochem. 29, 349,350.

    Article  PubMed  CAS  Google Scholar 

  7. Roffler-Tarlov S. and Graybiel A. M. (1984)Nature 307, 62–66.

    Article  PubMed  CAS  Google Scholar 

  8. Richter J. A., Stotz E. H., Ghetti B., and Simon J. R. (1992)Neurochem. Res. 17, 437–441.

    Article  PubMed  CAS  Google Scholar 

  9. Doucet G., Brundin P., Seth S., Murata Y., Strecker R. E., Triarhou L. C., Ghetti B., and Björklund A. (1989)Exp. Brain Res. 77, 552–568.

    Article  PubMed  CAS  Google Scholar 

  10. Roffler-Tarlov S., Pugatch D., and Graybiel A. M. (1990)J. Neurosci. 10, 734–740.

    PubMed  CAS  Google Scholar 

  11. Simon J. R. and Ghetti B. (1992)Neurochem. Res. 17, 431–436.

    Article  PubMed  CAS  Google Scholar 

  12. Kaseda Y., Ghetti B., Low W. C., Richter J. A., and Simon J. R. (1987)Brain Res. 422, 178–181.

    Article  PubMed  CAS  Google Scholar 

  13. Pullara J. M. and Marshall J. F. (1989)Brain Res. 480, 225–233.

    Article  PubMed  CAS  Google Scholar 

  14. Kaseda Y., Ghetti B., Low W. C., Norton J., Brittain H., Triarhou L. C., Richter J. A., and Simon J. R. (1990)Exp. Brain Res. 83, 1–8.

    Article  PubMed  CAS  Google Scholar 

  15. Roffler-Tarlov S., Graybiel A. M., Martin B., and Kauer J. (1987)Soc. Neurosci. Abstr. 13, 1599.

    Google Scholar 

  16. Ghetti B. and Triarhou L. C. (1992)Soc. Neurosci. Abstr. 18, 156.

    Google Scholar 

  17. Simon J. R., Yu H., Richter J. A., Vasko M. R., and Ghetti B. (1991)J. Neurochem. 57, 1478–1482.

    Article  PubMed  CAS  Google Scholar 

  18. Bostwick J. R. and Le W.-D. (1991)Anayt. Biochem. 192, 125–130.

    Article  CAS  Google Scholar 

  19. Lowly O. H., Rosebrough N. J., Farr A. L. and Randall R. J. (1951)J. Biol. Chem. 193, 265–275.

    Google Scholar 

  20. Robinson T. E. and Wishaw I. Q. (1988)Brain Res. 450, 209–224.

    Article  PubMed  CAS  Google Scholar 

  21. Castaneda E., Wishaw I. Q., Lermer L., and Robinson T. E. (1990)Brain Res. 508, 30–39.

    Article  PubMed  CAS  Google Scholar 

  22. Starke K., Reimann W., Zumstein A., and Hertting G. (1978)Naunyn Schmiedebergs Arch. Pharmacol. 305, 27–36.

    Article  PubMed  CAS  Google Scholar 

  23. Arbilla S. and Langer S. Z. (1981)Eur. J. Pharmacol. 76, 345–351.

    Article  PubMed  CAS  Google Scholar 

  24. Arbilla S., Langer S. Z., and Lehmann J. (1981)Br. J. Pharmacol. 74, 226P.

    Google Scholar 

  25. Cubeddu L. X. and Hoffmann I. S. (1982)J. Pharmacol. Exp. Ther. 223, 497–501.

    PubMed  CAS  Google Scholar 

  26. Blandina P., Goldfarb J., Craddock-Royal B., and Green J. P. (1989)J. Pharmacol. Exp. Ther. 251, 803–809.

    PubMed  CAS  Google Scholar 

  27. Clow D. W. and Jhamandas K. (1989)J. Pharmacol. Exp. Ther. 248, 722–728.

    PubMed  CAS  Google Scholar 

  28. Stotz E. H., Triarhou L. C., Ghetti B., and Simon J. R. (1993)Brain Res. 606, 267–272.

    Article  PubMed  CAS  Google Scholar 

  29. Stachowiak M. K., Bruno J. P., Snyder A. M., Stricker E. M., and Zigmond M. J. (1984)Brain Res. 291, 164–167.

    Article  PubMed  CAS  Google Scholar 

  30. Berger T. W., Kaul S., Stricker E. M., and Zigmond M. J. (1985)Brain Res. 336, 354–358.

    Article  PubMed  CAS  Google Scholar 

  31. Snyder A. M., Zigmond M. J., and Lund R. D. (1986).J. Comp. Neurol. 245, 274–281.

    Article  PubMed  CAS  Google Scholar 

  32. Bruno J. P., Jackson D., Zigmond M. J., and Stricker E. M. (1987)Behav. Neurosci. 101, 806–811.

    Article  PubMed  CAS  Google Scholar 

  33. Luthman J., Bolioli B., Tsutsumi T., Verhofstad A., and Jonsson G. (1987)Brain Res. Bull. 19, 269–274.

    Article  PubMed  CAS  Google Scholar 

  34. Towle A. C., Criswell H. E., Maynard E. H., Lauder J. M., Joh T. H., Mueller R. A., and Breese G. R. (1989)Pharmacol. Biochem. Behav. 34, 367–374.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, J.R., Ghetti, B. The weaver mutant mouse as a model of nigrostriatal dysfunction. Mol Neurobiol 9, 183–189 (1994). https://doi.org/10.1007/BF02816118

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816118

Index Entries

Navigation