Skip to main content
Log in

Synaptotagmin, a synaptic vesicle protein, is present in human cerebrospinal fluid

A new biochemical marker for synaptic pathology in Alzheimer disease?

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Using a novel approach, including affinity chromatography, reversed-phase chromatography, and chemiluminescence immunoblotting, we have for the first time been able to demonstrate one of the small synaptic vesicle proteins, synaptotagmin I, in cerebrospinal fluid (CSF). Two other small synaptic vesicle proteins, rab3a and synaptophysin, were not detectable. The approximate molecular weight of CSF-synaptotagmin was 65 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Further characterization of CSF synaptotagmin by high-performance capillary electrophoresis (HPCE) showed a single peak. These findings support that the whole synaptotagmin molecule is present in CSF, without significant proteolytic degradation. After high-speed centrifugation of CSF, synaptotagmin was exclusively found in the supernatant, suggesting that synaptotagmin is present in CSF as a free protein, and not as a constituent of synaptic vesicles. In a preliminary study, we found a marked reduction of CSF synaptotagmin in patients with early onset Alzheimer disease (EAD) as compared with age-matched healthy individuals. To elucidate the biological relevance of this finding, we also quantified synaptotagmin in brain tissue. A marked reduction in synaptotagmin was found both in the hippocampus and frontal cortex of EAD, suggesting that a decrease in synaptotagmin in the brain is followed by a concomitant decrease in the CSF. Analysis of CSF synaptotagmin might provide a tool to study synaptic function and pathology in the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adolfsson R., Gottfries C. G., Nystrom L., and Winblad B. (1981) Prevalence of dementia in institutionalised Swedish old people: the work load imposed by caring for these patients.Acta Psychiat. Scand. 63, 225–244.

    Article  PubMed  CAS  Google Scholar 

  • Åkesson B. and Björk L. (1986) A physiochemical study of protein G, a molecule with unique immunoglobulin G binding properties.J. Biol. Chem. 261, 10240–10247.

    Google Scholar 

  • Alafuzoff I., Iqbal K., Friden H., Adolfsson R., and Winblad B. (1987) Histopathological criteria for progressive dementia disorders: clinical-pathological correlation and classification by multivariate data analysis.Acta Neuropathol. (Berl.) 74, 209–225.

    Article  CAS  Google Scholar 

  • American Psychiatric Association (APA) (1987)Diagnostic and Statistical Manual of Mental Disorders, 3rd ed., rev. American Psychiatric Association, Washington, DC.

    Google Scholar 

  • Blennow K. and Wallin A. (1992) Clinical heterogeneity of probable Alzheimer's disease.J. Geriatr. Psychiat. Neurol. 5, 106–113.

    CAS  Google Scholar 

  • Blennow K., Wallin A., and Gottfries C. G. (1991) Presence of parietal lobe symptomatology distinguishes early and late onset Alzheimer's disease.Int. J. Geriatr. Psychiat. 6, 147–154.

    Article  Google Scholar 

  • Blennow K., Fredman P., Wallin A., Gottfries C. G., Langström L., and Svennerholm L. (1993a) Protein analyses in cerebrospinal fluid: I. Influence of concentration gradients for proteins on cerebrospinal fluid/serum albumin ratio.Eur. Neurol. 33, 126–128.

    Article  PubMed  CAS  Google Scholar 

  • Blennow K., Fredman P., Wallin A., Gottfries C. G., Karlsson I., Langström L., Skoog I., Svennerholm L., and Wikkelso C. (1993b) Protein analysis in cerebrospinal fluid: II. Reference values derived from healthy individuals 18–88 years in age.Eur. Neurol. 33, 129–133.

    Article  PubMed  CAS  Google Scholar 

  • Blennow K., Davidsson P., Wallin A., and Ekman R. (1995) Chromogranin A in cerebrospinal fluid: a biochemical market for synaptic degeneration in Alzheimer's disease?Dementia 6, 306–311.

    PubMed  CAS  Google Scholar 

  • Brose N., Petrenko A. G., Sudhof T. C., and Jahn R. (1992) Synaptotagmin: a Ca++ sensor on the synaptic vesicle surface.Science 256, 1021–1025.

    Article  PubMed  CAS  Google Scholar 

  • Constantinidis J. (1978) Is Alzheimer's disease a major form of senile dementia? Clinical, Anatomical and genetic data, in:Alzheimer's disease: Senile Dementia and Related Disorders. Aging vol. 7. (Katzman R., Terry R. D., and Bick K. L., eds.) Raven, New York, pp. 15–25.

    Google Scholar 

  • Davidsson P., Blennow K., and Ekman R. (1995) The barrier-independent form of transthyretin is decreased in CSF of patients with early-onset Alzheimer's disease (submitted).

  • Davies C. A., Mann D. M. A., Sumpter P. Q., and Yates P. O. (1987) A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer's disease.J. Neurol. Sci. 78, 151–164.

    Article  PubMed  CAS  Google Scholar 

  • DeKosky S. T. and Scheff S. W. (1990) Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity.Ann. Neurol. 27, 457–464.

    Article  PubMed  CAS  Google Scholar 

  • Hamos J. E., DeGennaro L. J., and Drachman D. A. (1989) Synaptic loss Alzheimer's disease and other dementias.Neurology 39, 355–361.

    PubMed  CAS  Google Scholar 

  • Hansen L. A., DeTeresa R., Davies P., and Terry R. D. (1988) Neocortical morphometry, lesion counts, and choline acetyltransferase levels in the age spectrum of Alzheimer's disease.Neurology 38, 48–54.

    PubMed  CAS  Google Scholar 

  • Hubbard B. M., and Anderson J. M. (1985) Age related variations in the neuron content of the cerebral cortex in senile dementia of Alzheimer type.Neuropathol. Appl. Neurobiol. 11, 369–382.

    Article  PubMed  CAS  Google Scholar 

  • Jahn R., Schiebler W., Quimet C., Greengard P. A. (1985) A 38,000 dalton membrane protein (p38) present in synaptic vesicles.Proc. Natl. Acad. Sci. USA 82, 4137–4141.

    Article  PubMed  CAS  Google Scholar 

  • Jessel T. M. and Kandel E. R. (1993) Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communication.Cell/Neuron 72/10 (Suppl.), 1–30.

    Google Scholar 

  • Katzman R. (1986) Alzheimer's disease.New Engl. J. Med. 314, 964–973.

    Article  PubMed  CAS  Google Scholar 

  • Kelly R. B. (1993) Storage and release of neurotransmitters.Cell/Neuron 72/10 (Suppl.), 43–53.

    Google Scholar 

  • Laemmli U. K. (1972) Cleavage of structural proteins during the assembly of the head of bacteriophage.Nature 227, 680–685.

    Article  Google Scholar 

  • Laemmli U. K. (1972) Cleavage of structural proteins during the assembly of the head of bacteriophage.Nature 227, 680–685.

    Article  Google Scholar 

  • Lassman H., Weiler R., Fischer P., Bancher C., Jellinger K., Floor E., Danielczyk W., Seitelberger F., and Winkler H. (1992) Synaptic pathology in Alzheimer's disease: immunological data for markers of synaptic and large dense-core vesicles.Neuroscience 46, 1–8.

    Article  Google Scholar 

  • Lauter H. (1970) Über Spätformen der Alzheimerschen Krankheit und ihre Beziehung zur senilen Demenz.Psychiatr. Clin. 3, 169–189.

    CAS  Google Scholar 

  • Lauter H. and Meyer J. E. (1968) Clinical and nosological concepts of senile dementia, inSenile Dementia: Clinical and Therapeutic Aspects (Müller C. and Ciompi L., eds.), Huber, Bern, pp. 13–26.

    Google Scholar 

  • Leary J. J., Brigati D. J., and Ward D. C. (1983) Rapid and sensitive colorimetric method for visualising biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellose.Proc. Natl. Acad. Sci. USA 80, 4045–4049.

    Article  PubMed  CAS  Google Scholar 

  • Mann D. M. A., Yates P. O., and Marcyniuk B. (1985) Some morphometric observations on the cerebral cortex and hippocampus in presenile Alzheimer's disease, senile dementia of Alzheimer type and Down's syndrome in middle age.J. Neurol. Sci. 69, 139–159.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E., Terry R. D., DeTeresa R., and Hansen L. A. (1989) Immunohistochemical quantification of the synapse-related protein synaptophysin in Alzheimer's disease.Neurosci. Lett. 103, 234–239.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E., Terry R. D., Alford M., DeTeresa R., and Hansen L. A. (1991a) Cortical and subcortical patterns of synaptophysinlike immunoreactivity in Alzheimer's disease.Am. J. Pathol. 138, 235–246.

    PubMed  CAS  Google Scholar 

  • Masliah E., Hansen L., Albright T., Mallory M., and Terry R. D. (1991b) Immunoelectron microscopic study of synaptic pathology in Alzheimer's disease.Acta Neuropathol. 81, 428–433.

    Article  PubMed  CAS  Google Scholar 

  • Mason D. Y. and Taylor C. R. (1978) Distribution of transferrin, ferritin and lactoferrin in human tissues.J. Clin. Pathol. 31, 316–327.

    Article  PubMed  CAS  Google Scholar 

  • Matteoli M., Maimann C., Torri-Tarelli F., Polak J. M., Ceccarelli B., and DeCamilli P. (1988) Differential effect of alpha latrotoxin on exocytosis from small synaptic vesicles and from large dense core vesicles containing calcitonin gene-related peptide at the frog neuromuscular junction.Proc. Natl. Acad. Sci. USA 85, 7366–7370.

    Article  PubMed  CAS  Google Scholar 

  • Matthew W. D., Tsavaler L., and Reichardt L. F. (1981) Identification of a synaptic vesicle-specific Membrane protein with a wide distribution in neuronal and neurosecretory tissue.J. Cell Biol. 91, 257–269.

    Article  PubMed  CAS  Google Scholar 

  • McKhann G., Drachman D., Folstein M., Katzman R., Price D., and Stadian E. M. (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of department of health and human services task force on Alzheimer's disease.Neurology 34, 939–944.

    PubMed  CAS  Google Scholar 

  • Neher E. and Penner R. (1994) Mice sans synaptotagmin.Nature 372, 316–317.

    Article  PubMed  CAS  Google Scholar 

  • Perin M. S., Fried V. A., Mignery G. A., Jahn R., and Südhof T. C. (1990) Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C.Nature 345, 260–263.

    Article  PubMed  CAS  Google Scholar 

  • Perin M. S., Johnston P. A., Özcelik T., Jahn R., Francke U., and Südhof T. C. (1991) Structural and functional conservation of synaptotagmin (p65) in drosophilia and humans.J. Biol. Chem. 226, 615–622.

    Google Scholar 

  • Roth M. (1980) Perspectives in the scientific study of mental illness in old age, inPriorities in Psychiatric Research (Lader M., ed.), John Wiley, Chichester, pp. 91–114.

    Google Scholar 

  • Roth M. (1986) The association of clinical and neurological findings and its bearing on the classification and aetiology of Alzheimer's disease.Br. Med. Bull. 42, 42–50.

    PubMed  CAS  Google Scholar 

  • Scheltens P., Barkhof F., Valk J., Algra P. R., van der Hoop R. G., Nauta J., Wolters E. C. (1992) White matter lesions on magnetic resonance imaging in Alzheimer's disease: evidence for heterogeneity.Brain 115, 735–748.

    Article  PubMed  Google Scholar 

  • Smith P. K., Krohn R. I., Hermansson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., and Klenk D. C. (1985) Measurement of protein using bicinchoninic acid.Anal. Biochem. 150, 76–85.

    Article  PubMed  CAS  Google Scholar 

  • Solé M., Munoz-Gómez J., and Campistol J. M. (1990) Role of amyloid in dialysis-related arthropathies, a morphological analysis of 23 cases.Virch. Arch. 417, 523–528.

    Article  Google Scholar 

  • Südhof T. and Jahn R. (1991) Proteins of synaptic vesicles involved in exocytosis and membrane recycling.Neuron 6, 665–677.

    Article  PubMed  Google Scholar 

  • Südhof T. C., DeCamilli P., Niemann H., and Jahn R. (1993) Membrane fusion machinery: insights from synaptic proteins.Cell 75, 1–4.

    PubMed  Google Scholar 

  • Suresh U. R., Wilkes S., and Hasleton P. S. (1991) Prealbumin in the diagnosis of bronchopulmonary carcinoid tumours.J. Clin. Pathol. 44, 573–575.

    Article  PubMed  CAS  Google Scholar 

  • Svennerholm L., and Gottfries C. G. (1994) Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in earlyonset form (type I) and demyelination in late-onset form (type II).J. Neurochem. 62, 1039–1047.

    Article  PubMed  CAS  Google Scholar 

  • Terry R. D., Masliah E., Salmon D. P., Butters N., DeTeresa R., Hill R., Hansen L. A., and Katzman R. (1991) Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment.Ann. Neurol. 30, 572–580.

    Article  PubMed  CAS  Google Scholar 

  • Thompson E. J. (1988)The CSF Proteins: A Biomedical Approach. Elsevier, Amsterdam, pp. 67–85.

    Google Scholar 

  • Tomlinson B. E. and Henderson G. (1976) Some quantitative cerebral findings in normal and demented old people, inNeurobiology of Aging (Terry R. D. and Gershon S., eds.), Raven, New York, pp. 183–204.

    Google Scholar 

  • Travis J. and Pahnell R. (1973) Selective removal of albumin from plasma by affinity chromatography.Clin. Chim. Acta 49, 49–52.

    Article  PubMed  CAS  Google Scholar 

  • Zhan S. S., Beyreuther K., and Schmitt H. P. (1993) Quantitative assessment of the synaptophysin immuno-reactivity of the cortical neurophil in various neurodegenerative disorders with dementia.Dementia 4, 66–74.

    PubMed  CAS  Google Scholar 

  • Zucker-Franklin D., Warfel A., Grysky G., Frangione B., and Teitel D. (1987) Novel monocyte-like properties of microglial/astroglial cells, constitutive secretion of lysozyme and cystatin C.Lab. Invest. 57, 176–185.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidsson, P., Jahn, R., Bergquist, J. et al. Synaptotagmin, a synaptic vesicle protein, is present in human cerebrospinal fluid. Molecular and Chemical Neuropathology 27, 195–210 (1996). https://doi.org/10.1007/BF02815094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815094

Index Entries

Navigation