Skip to main content
Log in

Pharmacological screen for activities of 12-hydroxyibogamine: a primary metabolite of the indole alkaloid ibogaine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

The purported efficacy of ibogaine for the treatment of drug dependence may be due in part to an active metabolite. Ibogaine undergoes first pass metabolism and isO-demethylated to 12-hydroxyibogamine (12-OH ibogamine). Radioligand binding assays were conducted to identify the potency and selectivity profiles for ibogaine and 12-OH ibogamine. A comparison of 12-OH ibogamine to the primary molecular targets identified previously for ibogaine demonstrates that the metabolite has a binding profile that is similar, but not identical to the parent drug. Both ibogaine and 12-OH ibogamine demonstrated the highest potency values at the cocaine recognition site on the 5-HT transporter. The same rank order (12-OH ibogamine > ibogaine), but lower potencies were observed for the [3H]paroxetine binding sites on the 5-HT transporter. Ibogaine and 12-OH ibogamine were equipotent at vesicular monoamine and dopamine transporters. The metabolite demonstrated higher affinity at the kappa-1 receptor and lower affinity at the NMDA receptor complex compared to the parent drug. Quantitation of the regional brain levels of ibogaine and 12-OH ibogamine demonstrated micromolar concentrations of both the parent drug and metabolite in rat brain. Drug dependence results from distinct, but inter-related neurochemical adaptations, which underlie tolerance, sensitization and withdrawal. Ibogaine’s ability to alter drug-seeking behavior may be due to combined actions of the parent drug and metabolite at key pharmacological targets that modulate the activity of drug reward circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Backstrom I, Bergstrom M, Marcusson (1989) High affinity [3H]paroxetine binding to serotonin uptake sites in human brain tissue. J Brain Res 486:261–268

    Article  CAS  Google Scholar 

  • Batki SL, Manfredi LB, Peyton J, Jones RT (1994) Flouxetine for cocaine dependence in methadone maintenance: quantiative plasma and urine cocaine/benzoylecgonine concentrations. J Clin Psychopharmacol 13:243–250

    Google Scholar 

  • Baumann MH, Brockington AM, Rothman RB (1993) Withdrawal from chronic cocaine enhances behavioral sensitivity to the 5-HT2/lc agonist DOI. Biol Psychiatry 34:576–577

    Article  PubMed  CAS  Google Scholar 

  • Baumann MH, Becketts KM, Rothman RB (1995) Evidence for alterations in presynaptic serotonergic function during withdrawal from cocaine in rats. Eur J Pharmacol 282:87–93

    Article  PubMed  CAS  Google Scholar 

  • Bowen WD, Vilner BJ, Williams W, Bertha CM, Kuehne ME, Jacobson AE (1995) Ibogaine and its congeners are sigma2 receptor-selective ligands with moderate affinity. Eur J Pharmacol 279:R1-R3

    Article  PubMed  CAS  Google Scholar 

  • Broderick PA, Phelan FT, Eng F, Wechsler RT (1994) Ibogaine modulates cocaine responses which are altered due to environmental habituation: in vivo microvoltametric and behavioral studies. Pharmacol Biochem Behav 49:711–728

    Article  PubMed  CAS  Google Scholar 

  • Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–346

    PubMed  CAS  Google Scholar 

  • Burris KD, Filtz TM, Chumpradit S, Kung MP, Foulon C, Hensler JG, Kung HF, Molinoff PB (1994) Characterization of [125I](R)-trans-7-hydroxy-2-[N-propyl-N-(3′-iodo-2′propenyl) amino] tetralin binding to dopamine D3 receptors in rat olfactory tubercle. J Pharmacol Exp Ther 268:935–942

    PubMed  CAS  Google Scholar 

  • Cappendijk SLT, Dzoljic MR (1994) Inhibitory effects of ibogaine on cocaine self-administration in rats. Eur J Pharmacol 241:261–265

    Article  Google Scholar 

  • Cappendijk SL, De Vries R, Dzoljic MR (1993) Excitatory amino acid receptor antagonists and naloxone-precipitated withdrawal syndrome in morphine-dependent mice. Eur Neuropsychopharmacol 3:111–116

    Article  PubMed  CAS  Google Scholar 

  • Covi L, Hess JM, Kreiter NA, Haertzen CA (1995) Effects of combined fluoxetine and counseling in the outpatient treatment of cocaine abusers. Am J Drug Alcohol Abuse 21:327–344

    Article  PubMed  CAS  Google Scholar 

  • Darchen F, Scherman D, Laduron PM, Henry J-P (1988) Ketanserin binds to the monoamine transporter of chromaffin granules and of synaptic vesicles. Mol Pharmacol 33: 672–677

    PubMed  CAS  Google Scholar 

  • Deecher DX, Teitler M, Soderlund DM, Bornmann WG, Kuehne ME, Glick SD (1992) Mechanisms of action of ibogaine and harmaline congeners based on radioligand binding studies. Brain Res 571:242–247

    Article  PubMed  CAS  Google Scholar 

  • DeKeyser J, Walraevens H, Ebinger G, Vauquelin G (1989) In human brain two subtypes of D1 receptors can be distinguished on the basis of differences in guanine nucleotide effect on agonist binding. J Neurochem 53:1096–1102

    Article  CAS  Google Scholar 

  • Di Chiara G (1995) Psychobiology of the role of dopamine in drug-abuse and addiction. Neurosci Res Commun 17:133–143

    Google Scholar 

  • Dzoljic ED, Kaplan CD, Dzoljic MR (1988) Effect of ibogaine on naloxone-precipitated withdrawal syndrome in chronic morphine dependent rats. Arch Int Pharmacodyn Ther 294:64–70

    PubMed  CAS  Google Scholar 

  • Ferrari-Dileo G, Waelbroeck M, Mash DC, Flynn DD (1994) A novel strategy for the selective labeling and localization of the M4 (m4) muscarinic receptor subtype. Mol Pharmacol 46: 1028–1035

    PubMed  CAS  Google Scholar 

  • Glennon RA (1990) Do classical hallucinogens act as 5HT2 agonists or antagonists? Neuropsychopharmacology 3:509–517

    PubMed  CAS  Google Scholar 

  • Glick SD, Rossman K, Steindorf S, Maisonneuve IM, Carlson JN (1991) Effects and aftereffects of ibogaine on morphine self-administration in rats. Eur J Pharmacol 195:341–345

    Article  PubMed  CAS  Google Scholar 

  • Glick SD, Rossman K, Rao NC, Maisonneuve IM, Carlson JN (1992) Effects of ibogaine on acute signs of morphine withdrawal in rats: independence from tremor. Neuropharmacology 31:497–500

    Article  PubMed  CAS  Google Scholar 

  • Glick SD, Kuehne ME, Raucci J, Wilson TE, Larson D, Keller RW, Carlson NJ (1994) Effects ofiboga alkaloids on morphine and cocaine self-administration in rats: relationship to tremorigenic effects and to effects on dopamine release in nucleus accumbens and striatum. Brain Res 657:14–22

    Article  PubMed  CAS  Google Scholar 

  • Gozlan H, El Mestikaway S, Pichat L, Glowinski J, Hamon M (1983) Identification of presynaptic serotonin autoreceptors using a new ligand:3H-PAT. Nature 305:140–142

    Article  PubMed  CAS  Google Scholar 

  • Harsing LG, Sershen H, Lajtha A (1994) Evidence that ibogaine releases dopaine from the cytoplasmic pool in isolated mouse striatum. J Neural Transm 96:215–225

    Article  CAS  Google Scholar 

  • Hearn WL, Mash DC, Pablo J, Hime G, Sambol NC, Doepel FM (1995a) Pharmacokinetics of Ibogaine: analytical methods, animal-human comparisons, and the identification of a primary metabolite. In: Spiehler, V. (ed) proceedings of the TIAFT-SOFT Joint Congress. Omnipress, Ann Arbor, Mich., pp 325–334

    Google Scholar 

  • Hearn WL, Pablo J, Hime GW, Mash DC (1995b) Identification and quantification of ibogaine and anO-demethylated metabolite in brain and biological fluids using gas chromatographymass spectrometry. J Anal Toxicol 19:427–434

    PubMed  CAS  Google Scholar 

  • Heidbreder CA, Goldberg SR, Shippenberg TS (1993) The kappa opioid receptor agonist U-69593 attenuates cocaine-induced behavioral sensitization in the rat. Brain Res 616:335–338

    Article  PubMed  CAS  Google Scholar 

  • Jarvie KR, Niznik HB, Seeman P (1987) Dopamine D-2 receptors in canine brain: ionic effects on [3H]neuroleptic binding. Eur J Pharmacol 144:163–171

    Article  PubMed  CAS  Google Scholar 

  • Jarvis MF, Schulz R, Hutchison AJ, Do UH, Sills MA, Williams M (1989) [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J Pharmacol Exp Ther 251:888–893

    PubMed  CAS  Google Scholar 

  • Karler R, Calder LD, Chaudhry IA, Turkanis SA (1989) Blockade of ‘reverse tolerance’ to cocaine and amphetamine by MK-801. Life Sci 45:500–606

    Article  Google Scholar 

  • Kish SJ, Distefano LM, Dozic S, Robitaille Y, Rajput A, Deck JH, Hornykiewicz O (1990) [3H]Vesamicol binding in human brain cholinergic deficiency disorders. Neurosci Lett 117:347–352

    Article  PubMed  CAS  Google Scholar 

  • Kleber HD (1995) Pharmacotherapy, current and potential, for treatment of cocaine dependence. Clin Neuropharmacol 18 [Suppl. 1]:S96-S109

    Google Scholar 

  • Kung MP, Canney DJ, Frederick D, Zhuang Z, Billings JJ, Kung HF (1994) Binding of125I-iodovinyltetrabenazine to CNS vesicular monoamine transport sites. Synapse 18:225–232

    Article  PubMed  CAS  Google Scholar 

  • Levy AD, Baumann MH, Van de Kar LD (1994) Monoaminergic regulation of neuroendocrine function and its modification by cocaine. Frontiers Neuroendocrinol 15:85–156

    Article  CAS  Google Scholar 

  • Lotsof HS (1995) Ibogaine in the treatment of chemical dependency disorders: clinical perspectives. Multidisciplinary Association for Psychedelic Studies 5:16–27

    Google Scholar 

  • Mach RH, Smith CR, Childers SR (1995) Ibogaine possesses a selective affinity for sigma2 receptors. Life Sci 57:PL57–62

    Article  PubMed  CAS  Google Scholar 

  • Malgouris C, Flamand F, Doble A (1993) Autoradiographic studies of RP 62203, a potent 5-HT2 receptor antagonist. Pharmacological characterization of [3H]RP62203 binding in the rat brain. Eur J Pharmacol 233:36–45

    Google Scholar 

  • Mash DC, Staley JK, Pablo JP, Holohean AM, Hackman JC, Davidoff RA (1995a) Properties of ibogaine and its principal metabolite (12-hydroxyibogamine) at the MK-801 binding site of the NMDA complex. Neurosci Lett 192:53–56

    Article  PubMed  CAS  Google Scholar 

  • Mash DC, Staley JK, Baumann MH, Rothman RB, Hearn WL (1995b) Identification of a primary metabolite of ibogaine that targets serotonin transporters and elevates serotonin. Life Sci 57:PL45–50

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ (1994) Molecular neurobiology of drug addiction. Neuropsychopharmacology 11:77–87

    PubMed  CAS  Google Scholar 

  • Nestler EJ, Hyman S (1993) Molecular foundations of psychiatry. American Psychiatric Press, Washington, DC.

    Google Scholar 

  • Ni Q, Xu H, Partilla JS, de Costa BR, Rice KC, Rothman RB (1993) Selective labeling of kappa 2 opioid receptors in rat brain by [125I]IOXY: interaction of opioid peptides and other drugs with multiple kappa 2a binding sites. Peptides 14:1279–1293

    Article  PubMed  CAS  Google Scholar 

  • Nock B, Rajpara A, O’Connor LH, Cicero TJ (1988) Autoradiography of [3H]U69593 binding sites in rat brain: evidence for kappa opioid receptor subtypes. Eur J Pharmacol 154:27–34

    Article  PubMed  CAS  Google Scholar 

  • O’Hearn E, Molliver ME (1993) Degeneration of Purkinje cells in parasagittal zones of the cerebellar vermis after treatment with ibogaine or harmaline. Neuroscience 55:303–310

    Article  PubMed  CAS  Google Scholar 

  • Parsons LH, Koob GF, Weiss F (1995) Serotonin dysfunction in nucleus accumbens of rats during withdrawal after unlimited access to intravenous cocaine. J Pharmacol Exp Ther 274: 1182–1191

    PubMed  CAS  Google Scholar 

  • Pearl SM, Herrick-Davis K, Teitler M, Glick SD (1995) Radioligand-binding study of noribogaine, a likely metabolite of ibogaine. Brain Res 675:342–344

    Article  PubMed  CAS  Google Scholar 

  • Popik P, Layer RT, Skolnick P (1994) The putative anti-addictive drug ibogaine is a competitive inhibitor of [3H]MK-801 binding to the NMDA receptor complex. Psychopharmacology 114:672–674

    Article  PubMed  CAS  Google Scholar 

  • Popik P, Layer RT, Sholnick P (1995) 100 Years of ibogaine: neurochemical and pharmacological actions of a putative anti-addictive drug. Pharmacol Rev 47:235–253

    PubMed  CAS  Google Scholar 

  • Pudiak CM, Bozarth MA (1993) L-NAME and MK-801 attenutate sensitization to the locomotor-stimulating effect of cocaine. Life Sci 53:1517–1524

    Article  PubMed  CAS  Google Scholar 

  • Reid MS, Souza KH, Broderick P, Berger P (1994) Evidence that ibogaine modulates dopamine via a kappa receptor mechanism. NIDA Res Monogr 153:392

    Google Scholar 

  • Rothman RB, Cadet JL, Akunne HC, Silverthorn ML, Baumann MH, Carroll FI, Rice KC, de Costa BR, Partilla JS, Wang JB, Uhl G, Glowa JR, Dersch CM (1994) Studies of the biogenic amine transporters. IV. Demonstration of a multiplicity of binding sites in rat caudate membraines for the cocaine analog [123I]RTI-55. J Pharmacol Exp Ther 270:296–309

    PubMed  CAS  Google Scholar 

  • Sershen H, Hashim A, Harsing L, Lajtha A (1992) Ibogaine antagonizes cocaine-induced locomotor stimulation in mice. Life Sci 50:1079–1086

    Article  PubMed  CAS  Google Scholar 

  • Sershen H, Hashim A, Lajtha A (1994) Ibogaine reduces preference for cocaine consumption in C57BL/6By mice. Pharmacol Biochem Behav 47:13–19

    Article  PubMed  CAS  Google Scholar 

  • Sisko B (1993) Interrupting drug dependency with ibogaine: a summary of four case histories. Multidisciplinary Association for Psychedelic Studies IV:15–24

    Google Scholar 

  • Spanagel R, Shippenberg TS (1993) Modulation of morphine-induced sensitization by endogenous k-opioid systems. Neurosci Lett 153:232–236

    Article  PubMed  CAS  Google Scholar 

  • Spanagel R, Herz A, Shippenberg TS (1992) Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci USA 89: 2046–2050

    Article  PubMed  CAS  Google Scholar 

  • Staley JK, Basile M, Flynn DD, Mash DC (1994) Visualizing dopamine and serotonin transporters in the human brain with the potent cocaine analogue [125I]RTI-55: in vitro binding and autoradiographic characterization. J Neurochem 62:540–556

    Google Scholar 

  • Staley JK, Boja JW, Carroll FI, Seltzman H, Wyrick CD, Lewin AH, Abraham P, Mash DC (1995) Mapping the dopamine transporter in human brain with the novel selective cocaine analog [125I]RTI-121. Synapse 21:364–372

    Article  PubMed  CAS  Google Scholar 

  • Sweetnam PM, Lancaster J, Snowman A, Collins JL, Perschke S, Bauer C, Ferkany J (1995) Receptor binding profile suggests multiple mechanisms of action are responsible for ibogaine’s putative anti-addictive activity. Psychopharmacology 118: 369–376

    Article  PubMed  CAS  Google Scholar 

  • Tejani-Butt S, Brunswick DJ, Frazer A (1990) [3H]Nisoxetine: a new radioligand for norepinephrine uptake sites in brain. Eur J Pharmacol 191:239–243

    Article  PubMed  CAS  Google Scholar 

  • Touchette N (1993) Ibogaine neurotoxicity raises new questions in addiction research. NIH Res 5:50–55

    Google Scholar 

  • Trujillo KA, Akil H (1991) Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science 251:85–87

    Article  PubMed  CAS  Google Scholar 

  • Trujillo KA, Akil H (1995) Excitatory amino acids and drugs of abuse: a role forN-methyl-d-aspartate receptors in drug tolerance, sensitization and physical dependence. Drug Alcohol Depend 38:139–154

    Article  PubMed  CAS  Google Scholar 

  • Walsh SL, Preston KL, Sullivan JT, Fromme R, Bigelow GE (1994) Fluoxetine alters the effects of intravenous cocaine in humans. J Clin Psychopharmacol 14:396–407

    PubMed  CAS  Google Scholar 

  • Whitaker PM, Seeman P (1977) Hallucinogen binding to dopamine/neuroleptic receptors. J Pharm Pharmacol 29:506–507

    PubMed  CAS  Google Scholar 

  • Zabetian CP, Staley JK, Flynn DD, Mash DC (1994) [3H]-(+)-Pentazocine binding to sigma recognition sites in human cerebellum. Life Sci 55:389–395

    Article  Google Scholar 

  • Zetler G, Singbartl G, Schlosser L (1972) Cerebral pharmacokinetics of tremor-producing harmala and iboga alkaloids. Pharmacology 7:237–248

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staley, J.K., Ouyang, Q., Pablo, J. et al. Pharmacological screen for activities of 12-hydroxyibogamine: a primary metabolite of the indole alkaloid ibogaine. Psychopharmacology 127, 10–18 (1996). https://doi.org/10.1007/BF02805969

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02805969

Key words

Navigation