Skip to main content
Log in

On the possible role of local effects on the species richness of acidic and calcareous rock grasslands in northern Hungary

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Ewald (Folia Geobot. 38: 357–366, 2003, this issue) stated that in Central Europe the number of calcifrequent species is higher than the number of acidofrequent species, while the range of acidofrequent communities is larger than that of the calcifrequent ones. All the explanations considered in his paper are based on an evolutionary spatial and temporal scale. In this paper we are trying to prove that local effects might also be important.

Five open rock grassland communities on different bedrocks, viz. rhyolite (acidic), andesite (slightly acidic), calcareous sandstone (slightly calcareous), limestone (calcareous) and dolomite (calcareous) were chosen for the analysis. Two parameters of the species-area curve (i.e., local richness and the slope of log area-species richness line) were estimated based on all species and on rock specialist species separately. With this method we could simultaneously study three attributes of diversity: local species number, the slope of log area-species richness line, and species pool size.

We found that the size of the regional species pool is determined by local effects through local richness (slopes do not differ significantly). Consequently, in this case weathering is a more important characteristic for bedrocks than the Ca2+ content. The extremely high number of rock species on dolomite is also determined by local effects; the fine, continuously changing pattern of microhabitats makes the role of competition weaker.

The slope of log area-species richness line, calculated for the rock specialist species is unambiguously higher on the calcareous grasslands. The difference can be explained by the smaller species pool on acidic rocks caused by the lower speciation ability. This is supported by the fact that the endemic species of dry habitats are concerntrated on the calcareous ones. One possible explanation for the lower speciation ability could be that adaptation to acidic habitats is more difficult than to calcareous ones.

The different behaviour of rock specialist species is the consequence of the limited permeability of the surrounding landscape. Hence, on calcareous habitats the arrival of all species from the larger species pool needs more time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arrhenius O. (1921): Species and area.J. Ecol. 9: 95–99.

    Article  Google Scholar 

  • Bartha S. &Ittzés P. (2001): Local richness — species pool ratio: a consequence of the species-area relationship.Folia Geobot. 36: 9–23.

    Google Scholar 

  • Bartha S., Rédei T., Szollát GY., Bódis J. &Mucina L. (1998): Északi és déli kitettségu dolomitsziklagyepek térbeli mintázatainak összehasonlítása (Compositional diversity and fine-scale spatial pattern of dolomite grasslands on contrasting slopes). In:Csontos P. (ed.),Sziklagyepek szünbotanikai kutatása (Synbotanical study of rock grasslands), Scientia Kiadó, Budapest, pp. 159–182.

    Google Scholar 

  • Borhidi A. (1995): Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora.Acta Bot. Hung. 39: 97–181.

    Google Scholar 

  • Botta-Dukát Z. &Ruprecht E. (1999): Using concentration analysis for operating with indicator values: effect of grouping species.Acta Bot. Hung. 42: 59–67.

    Google Scholar 

  • Connor E.F. &Mccoy E.D. (1979): The statistics and biology of the species-area relationship.Amer. Naturalist 113: 791–833.

    Article  Google Scholar 

  • Csiky J. (2002):A Nógrád-Gömöri bazaltvidék flórája és vegetációja (Flora and vegetation of the Nógrád-Gömör basalt area). Ph.D. Thesis, University of Pécs, Pécs.

    Google Scholar 

  • Dahl E. (1960): Some measures of uniformity in vegetation analysis.Ecology 41: 785–790.

    Article  Google Scholar 

  • Efron B. (1982):The jack-knife, the bootstrap and other resampling plans. Society for Industrial and Applied Mathematics, Philadelphia.

    Google Scholar 

  • Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W. &Paulissen D. (1991): Zeigewerte von Pflanzen in Mitteleuropa.Scripta Geobot. 18: 1–248.

    Google Scholar 

  • Ewald J. (2003): The calcareous riddle: Why are there so many calciphytic species in the Central European flora?Folia Geobot. 38: 357–366 (this issue).

    Google Scholar 

  • Feoli E. &Orlóci L. (1979): Analysis of concentration and detection of underlying factors in structured tables.Vegetatio 40: 49–54.

    Article  Google Scholar 

  • Fisher R.A., Corber A.S. &Williams C.B. (1943): The relation between the number of species and the number of individuals in a random sample of an animal population.J. Anim. Ecol. 12: 42–58.

    Article  Google Scholar 

  • Gams H. (1930): Über Reliktföhrenwälder und das Dolomitphänomen.Veröff. Geobot. Inst. Stiftung Rübel Zürich 6: 32–80.

    Google Scholar 

  • Gleason H.A. (1922): On the relation between species and area.Ecology 3: 158–162.

    Article  Google Scholar 

  • Goldberg D.H. &Novoplansky A. (1997): On the relative importance of competition in unproductive environments.J. Ecol. 85: 409–418.

    Article  Google Scholar 

  • Gough L., Shaver G. R., Carroll J., Royer D.L. &Laundre J.A. (2000): Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH.J. Ecol. 88: 54–66.

    Article  Google Scholar 

  • Grace J.B. (2001): Difficulties with estimating and interpreting species pool and the implications for understanding patterns of diversity.Folia Geobot. 36: 71–83.

    Google Scholar 

  • Grime J.P. (1979):Plant strategies and vegetation processes. John Wiley & Sons, Chichester.

    Google Scholar 

  • Grubb P.J. (1987): Global trends in species-richness in terrestrial vegetation: a view from the northern hemisphere. In:Gee J.H.R. &Giller P.S. (eds.),Organization of communities, Blackwell, Oxford, pp. 99–118.

    Google Scholar 

  • Herben T. (2000): Correlation between richness per unit area and the species pool cannot be used to demonstrate the species pool effect.J. Veg. Sci. 11: 123–126

    Article  Google Scholar 

  • Horánszky A. (1964):Die Wälder des Szentendre-Visegráder Gebirges. Akadémiai Kiadó, Budapest.

    Google Scholar 

  • Huston M. (1979): A general hypothesis of species diversity.Amer. Naturalist 113: 81–101.

    Article  Google Scholar 

  • Juhász-Nagy P. (1984):Beszélgetések az ökológiáról (Conversations on ecology). Mezogazdasági Kiadó, Budapest.

    Google Scholar 

  • Juhász-Nagy P. (1986):Egy operatív ökológia hiánya, szükséglete és feladatai (Lack, need and tasks of an operative ecology). Akadémiai Kiadó, Budapest.

    Google Scholar 

  • Kovácsné Láng E. (1966): Összehasonlító talaj- és növényanalízis dolomit- és mészkô-szikla-gyepekben (Comparative soil and plant analysis in dolomite and limestone rock swards).Bot. Közlem. 53: 175–184.

    Google Scholar 

  • Lepš J. (2001): Species-pool hypothesis: limits to its testing.Folia Geobot. 36: 45–52.

    Article  Google Scholar 

  • Lucas R.F. &Davies J.F. (1960): Relationships between pH values of organic soils and availabilities of 12 plant nutrients.Soil Sci. 92: 177–182

    Article  Google Scholar 

  • MacArthur R.H. &Wilson E.O. (1967):The theory of island biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Orlóci L. &Kenkel N.C. (1985):Introduction to data analysis. International Co-operative Publ. House, Burtonsville.

    Google Scholar 

  • Peet R.K. &Christensen N.L. (1988): Changes in species diversity during secondary forest succession on the North Carolina piedmont. In:During H.J., Werger M.J.A. &Willems H.J. (eds.),Diversity and pattern in plant communities, Junk, The Hague, pp. 233–246.

    Google Scholar 

  • Précsényi I. (1995): Relationship between the stages of succession series and the water indicator values.Bot. Közlem. 82: 59–66.

    Google Scholar 

  • Preston F.W. (1948): The commonness and rarity of species.Ecology 29: 254–283.

    Article  Google Scholar 

  • Preston F.W. (1960): Time and space and variation of species.Ecology 41: 611–627.

    Article  Google Scholar 

  • Preston F.W. (1962): The canonical distribution of commonness and rarity.Ecology 43: 185–215.

    Article  Google Scholar 

  • Simon T. (1977):Vegetationsuntersuchungen im Zempléner Gebirge. Akadémiai Kiadó, Budapest.

    Google Scholar 

  • Török K., Horánszky A. &Kósa G. (1994): Long-term changes of species composition in an andesite grassland community of the Visegrád Mts., Hungary.Abstr. Bot. 18: 13–27.

    Google Scholar 

  • Török K. &Zólyomi B. (1998): A Kárpát-medence öt sziklagyeptársulásának szüntaxonómiai revíziója (Syntaxonomical revision on five rocky grassland communities of the Carpathian Basin). In:Csontos P. (ed.),Sziklagyepek szünbotanikai kutatása (Synbotanical study of rock grasslands), Scientia Kiadó, Budapest, pp. 109–132.

    Google Scholar 

  • Williams C.B. (1944): Some applications of the logaritmic series and the index of diversity to ecological problems.J. Ecol. 32: 1–44.

    Article  Google Scholar 

  • Williams C.B. (1947): The logaritmic series and its application to biological problems.J. Ecol. 34: 253–272.

    Article  Google Scholar 

  • Zar J.H. (1999):Biostatistical analysis. Ed. 4. Prentice Hall, Upper Saddle River.

    Google Scholar 

  • Zobel M. (1997): The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence?Trends Ecol. Evol. 12: 266–269.

    Article  Google Scholar 

  • Zobel, M., van der Maarel E. &Dupré C. (1998): Species pool: the concept, its determination and significance for community restoration.Appl. Veg. Sci. 1: 55–66.

    Article  Google Scholar 

  • Zólyomi B. (1942): A középdunai flóraválasztó és a dolomitjelenség (Die Mitteldonau-Florenscheide und das Dolomitphänomen).Bot. Közlem. 39: 209–223.

    Google Scholar 

  • Zólyomi B. (1950): Fitotsenozi i lesomelioratsii obnazhenii gor Budi (Les Phytocoenoses des montagnes de Buda et la reboisement des entroits dénudés).Acta Biol. Acad Sci. Hung. 1: 7–67.

    Google Scholar 

  • Zólyomi B. (1958): Budapest és környékének természetes növénytakarója (The natural vegetation of Budapest and its environs). In:Pécsi M., Marosi S. &Szilárd J. (eds.),Budapest Természeti Képe (The Nature of Budapest), Akadémiai Kiadó, Budapest, pp. 509–642.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Rédei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rédei, T., Botta-Dukát, Z., Csiky, J. et al. On the possible role of local effects on the species richness of acidic and calcareous rock grasslands in northern Hungary. Folia Geobot 38, 453–467 (2003). https://doi.org/10.1007/BF02803252

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803252

Keywords

Navigation