Skip to main content
Log in

Effect of sodium butyrate on mammalian cells in culture: A review

  • Published:
In Vitro - Plant Aims and scope Submit manuscript

Summary

Sodium butyrate produces reversible changes in morphology, growth rate, and enzyme activities of several mammalian cell types in culture. Some of these changes are similar to those produced by agents which increase the intracellular level of adenosine 3′,5′-cyclic monophosphate (cAMP) or by analogs of cAMP. Sodium butyrate increases the intracellular level of cAMP by about two fold in neuroblastoma cells; therefore, some of the effects of sodium butyrate on these cells may in part be mediated by cAMP. Sodium butyrate appears to have properties of a good chemotherapeutic agent for neuroblastoma tumors because the treatment of neuroblastoma cells in culture causes cell death and “differentiation”; however, it is either innocuous or produces reversible morphological and biochemical alterations in other cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pace, D. M., B. T. Aftonomos, A. Elliot, and S. Sommer. 1967. Observations on some effects of the sodium salts of certain monocarboxylic acids on established cell lines. Can. J. Biochem. 45: 81–88.

    Article  CAS  Google Scholar 

  2. Prasad, K. N., and A. W. Hsie. 1971. Morphologic differentiation of mouse neuroblastoma cells induced in vitro by dibutyryl adenosine 3′:5′-cyclic monophosphate. Nature [New Biol.] 233: 141–142.

    CAS  Google Scholar 

  3. Prasad, K. N. 1972. Cyclic AMP and the differentiation of mouse neuroblastoma cells in culture. In: N. G. Anderson, J. H. Coggin, Jr., E. Cole, and J. W. Holleman (Eds.),Embryonic and Fetal Antigens in Cancer. USAEC, Washington, pp. 279–295.

    Google Scholar 

  4. Prasad, K. N., and S. Kumar. 1974. Cyclic AMP and the differentiation of neuroblastoma cells. In: B. Clarkson and R. Baserga (Eds.),Control of Proliferation in Animal Cells. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp. 581–594.

    Google Scholar 

  5. Waymire, J. C., N. Weiner, and K. N. Prasad. 1972. Regulation of tyrosine hydroxylase activity in cultured mouse neuroblastoma cells: Elevation induced by analogs of adenosine 3′:5′-cyclic monophosphate. Proc. Natl. Acad. Sci. U.S.A. 69: 2241–2245.

    Article  PubMed  CAS  Google Scholar 

  6. Richelson, E. 1973. Stimulation of tyrosine hydroxylase activity in an adrenergic clone of mouse neuroblastoma by dibutyryl cyclic AMP. Nature [New Biol.] 242: 175–177.

    CAS  Google Scholar 

  7. Prasad, K. N., and B. Mandal. 1973. Choline acetyltransferase level in cyclic AMP and x-ray induced morphologically differentiated neuroblastoma cells in culture. Cytobios 8: 75–80.

    PubMed  CAS  Google Scholar 

  8. Prasad, K. N., and A. Vernadakis. 1972. Morphological and biochemical study in x-ray and dibutyryl cyclic AMP-induced differentiated neuroblastoma cells. Exp. Cell Res. 70: 27–32.

    Article  PubMed  CAS  Google Scholar 

  9. Prasad, K. N., and B. Mandal. 1972. Catechol-o-methyltransferase activity in dibutyryl cyclic AMP, prostaglandin and x-ray induced differentiated neuroblastoma cell culture. Exp. Cell Res. 74: 532–534.

    Article  PubMed  CAS  Google Scholar 

  10. Prasad, K. N., K. N. Gilmer, and S. Kumar. 1973. Morphologically “differentiated” mouse neuroblastoma cells induced by noncyclic AMP agents: Levels of cyclic AMP, nucleic acid and protein. Proc. Soc. Exp. Biol. Med. 143: 1168–1171.

    PubMed  CAS  Google Scholar 

  11. Sheppard, J. R., and K. N. Prasad. 1973. Cyclic AMP levels and the morphological differentiation of mouse neuroblastoma cells. Life Sci., Part II 12: 431–439.

    Article  CAS  Google Scholar 

  12. Prasad, K. N., and K. N. Gilmer. 1974. Demonstration of dopamine-sensitive adenylate cyclase in malignant neuroblastoma cells and change in sensitivity of adenylate cyclase to catecholamines in “differentiated” cells. Proc. Natl. Acad. Sci. U.S.A. 71: 2525–2529.

    Article  PubMed  CAS  Google Scholar 

  13. Prasad, K. N., and S. Kumar. 1973. Cyclic 3′,5′-AMP phosphodiesterase activity during cyclic AMP-induced differentiation of neuroblastoma cells in culture. Proc. Soc. Exp. Biol. Med. 142: 406–409.

    PubMed  CAS  Google Scholar 

  14. Prasad, K. N., S. Kumar, K. N. Gilmer, and A. Vernadakis. 1973. Cyclic AMP-induced differentiated neuroblastoma cells: Changes in total nucleic acid and protein contents. Biochem. Biophys. Res. Commun. 50: 973–977.

    Article  PubMed  CAS  Google Scholar 

  15. Prasad, K. N., S. C. Bondy, and J. L. Purdy. 1975. Changes in poly(A)-containing cytoplasmic RNA in cyclic AMP-induced “differentiated” neuroblastoma cells in culture. Exp. Cell Res. 94: 88–94.

    Article  PubMed  CAS  Google Scholar 

  16. Prasad, K. N. 1973. Role of cyclic AMP in the differentiation of neuroblastoma cell culture. In: J. Schultz and H. G. Gratzner (Eds.),The Role of Cyclic Nucleotides in Carcinogenesis. Academic Press, New York, Vol. 6, pp. 207–237.

    Google Scholar 

  17. Ginsburg, E., D. Salomon, T. Sreevalson, and E. Freese. 1973. Growth inhibition and morphological changes caused by lipophilic acids in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 70:2457–2461.

    Article  PubMed  CAS  Google Scholar 

  18. Johnson, G. S., R. M. Friedman, and I. Pastan. 1971. Restoration of several morphological characteristics of normal fibroblasts in sarcoma cells treated with adenosine 3′,5′-cyclic monophosphate and its derivatives. Proc. Natl. Acad. Sci. U.S.A. 68: 425–429.

    Article  PubMed  CAS  Google Scholar 

  19. Cho-Chung, Y. S., and P. M. Gullino. 1974. In vivo inhibition of growth of two hormone-dependent mammary tumors by dibutyryl cyclic AMP. Science 183: 87–88.

    Article  PubMed  CAS  Google Scholar 

  20. Wahrmann, J. P., R. Winand, and D. Luzzati. 1973. Effect of cyclic AMP on growth and morphological differentiation of an established myogenic cell line. Nature [New Biol.] 245: 112–113.

    CAS  Google Scholar 

  21. Weber, G. 1973. The molecular correlation concept of neoplasia and the cyclic AMP system. In: J. Schultz and H. G. Gratzner (Eds.),The Role of Cyclic Nucleotides in Carcinogenesis. Academic Press, New York, Vol. 6, pp. 57–102.

    Google Scholar 

  22. Stellwagen, R. H. 1972. Induction of tyrosine aminotransferase in HTC cells by N6O2′-dibutyryl adenosine 3′,5′-monophosphate. Biochem. Biophys. Res. Commun. 47: 1144–1150.

    Article  PubMed  CAS  Google Scholar 

  23. Wijk, R. V., W. D. Wicks, and K. Clay. 1972. Effects of derivatives of cyclic 3′,5′-adenosine monophosphate on the growth, morphology, and gene expression of hepatoma cells in culture. Cancer Res. 32: 1905–1911.

    Google Scholar 

  24. Wright, J. A. 1973. Morphology and growth rate changes in Chinese hamster cells cultured in presence of sodium butyrate. Exp. Cell Res. 78: 456–460.

    Article  PubMed  CAS  Google Scholar 

  25. Hsie, A. W., and T. T. Puck, 1971. Morphological transformation of Chinese hamster ovary cells by dibutyryl adenosine 3′,5′-monophosphate and testosterone. Proc. Natl. Acad. Sci. U.S.A. 68: 358–361.

    Article  PubMed  CAS  Google Scholar 

  26. Prasad, K. N., and S. Kumar. 1975. Role of cyclic AMP in differentiation of human neuroblastoma cells in culture. Cancer (in press).

  27. Macintyre, E. H., J. P. Perkins, C. J. Wintersgill, and A. W. Vatter. 1971. The response in culture of human tumor astrocytes and neuroblasts to N6O2′-dibutyryl adenosine 3′,5′-cyclic monophosphate acid. J. Cell Sci. 11: 634–667.

    Google Scholar 

  28. Helson, L., K. Lai, and C. W. Young. 1974. Papaverine-induced changes in cultured human melanoma cells. Biochem. Pharmacol. 23: 2917–2920.

    Article  PubMed  CAS  Google Scholar 

  29. Sandor, R. 1973. Inhibition of human rhabdomyosarcoma cell growth in agar by dibutyryl cyclic AMP. J. Natl. Cancer Inst. 50: 257–259.

    Google Scholar 

  30. Fishman, P. H., J. L. Simmons, R. O. Brody, and E. Freese. 1974. Induction of glycolipid biosynthesis by sodium butyrate in HeLa cells. Biochem. Biophys. Res. Commun. 59: 292–299.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, K.N., Sinha, P.K. Effect of sodium butyrate on mammalian cells in culture: A review. In Vitro Cell.Dev.Biol.-Plant 12, 125–132 (1976). https://doi.org/10.1007/BF02796360

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02796360

Key words

Navigation