Skip to main content
Log in

Effects of different levels of dietary zinc on the gilthead,Sparus aurata during the growing season

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Gilthead were fed three diets. Diet A was the control diet, whereas diets B and C were supplemented with 300 and 900 mg Zn/kg, respectively. Fish fed with diet C, at the end of the experiment, showed the lowest weight. Zinc concentrations presented the higher values in gills, liver, and kidney. Muscle and brain had the lower mean values and showed a tight control of zinc levels. These results reinforce the hypothesis that zinc in the CNS should be strictly controlled in order to maintain the functional role of the metal. Significant differences in tissue zinc concentrations were obtained between fish fed different amounts of zinc, the metal concentrations being higher in tissues of fish fed diet C. The tissue decrease of zinc, found at the end of the experiment, may depend on a lower feed consumption or on different zinc requirements during the cold season. These changes, even if not univocal among the three diets, may be associated with the life cycle of fish. Furthermore, copper concentrations were little affected by the different concentrations of zinc in the three diets; liver and kidney presented the highest concentrations; liver showed a significant decrease in copper content at the end of the experiment. We conclude that: zinc concentrations of the diet may affect the gilthead weights and the tissual metal content; and zinc concentrations in the diets, depending on the growth rate, may be varied depending on the season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. L. Vallee and K. H. Falchuk, The biochemical basis of zinc physiology,Physiol. Rev. 73, 79–118 (1993).

    PubMed  CAS  Google Scholar 

  2. N. F. Krebs and K. M. Hambidge, Zinc requirements and zinc intakes of breast-fed infants.Am. J. Clin. Nutr. 43, 288–292 (1986).

    PubMed  CAS  Google Scholar 

  3. F. Licastro, M. C. Morini, M. Chiricolo, D. Belletti, P. Malpassi, R. Parente, E. Carpenè, and R. Conte, Functional assessment of cellular non-specific and specific immunity in selected healthy elderly,Arch. Gerontol. Geriatr. suppl. 3, 219–228 (1992).

    Article  CAS  Google Scholar 

  4. C. Ogino and G. Yang, Requirement of rainbow trout for dietary zinc,Bull. Jpn. Soc. Sci. Fish. 44, 1015–1018 (1978).

    CAS  Google Scholar 

  5. R. W. Hardy and K. D. Shearer, Effect of dietary calcium phosphate and zinc supplementation on whole body zinc concentration of rainbow trout (Salmo gairdneri),Can. J. Fish. Aquat. Sci. 42, 181–184 (1985).

    Article  CAS  Google Scholar 

  6. E. Carpenè and A. Veggetti, Increase in muscle fibres in the lateralis muscle (white portion) of Mugilidae (Pisces, Teleostei),Experientia 37, 191–193 (1981).

    Article  PubMed  Google Scholar 

  7. SPSS for Windows Base System User’s Guide, Release 6.0, SPSS Inc., Chicago, IL (1993).

  8. D. M. Gatlin III, J. P. O’Connell, and J. Scarpa, Dietary zinc requirement of the red drum,Sciaenops ocellatus, Aquacult. 92, 259–265 (1991).

    Article  CAS  Google Scholar 

  9. J. Scarpa and D. M. Gatlin III, Dietary zinc requirements of channel catfish,Ictalurus punctatus, swim-up fry in soft and hard water,Aquacult. 106, 311–322 (1992).

    Article  CAS  Google Scholar 

  10. S. Satoh, K. Izume, T. Takeuchi, and T. Watanabe, Availability to rainbow trout of zinc contained in various types of fish meals,Nippon Suisan Gakkaishi 53, 1861–1866 (1987).

    CAS  Google Scholar 

  11. D. M. Gatlin III and H. F. Phillips, Dietary calcium, phytate and zinc interactions in channel catfish,Aquacult. 79, 259–266 (1989).

    Article  CAS  Google Scholar 

  12. S. S. Jeng and L. T. Sun, Effects of dietary zinc levels on zinc concentrations in tissues of common carp.J. Nutr. 111, 134–140 (1981).

    PubMed  CAS  Google Scholar 

  13. J. Overnell, T. C. Fletcher, and R. McIntosh, The apparent lack of effect of supplementary dietary zinc on zinc metabolism and metallothionein concentrations in the turbot,Scophthalmus maximus (Linnaeus), J. Fish Biol. 33, 563–570 (1988).

    Article  CAS  Google Scholar 

  14. J. C. Wekell, K. D. Shearer, and C. R. Houle, High zinc supplementation of rainbow trout diets,Progr. Fish-Cult. 45, 144–147 (1983).

    Article  CAS  Google Scholar 

  15. J. C. Wekell, K. D. Shearer, and E. J. Gauglitz Jr., Zinc supplementation of trout diets: tissue indicators of body zinc status,Progr. Fish-Cult. 48, 205–212 (1986).

    Article  CAS  Google Scholar 

  16. R. W. Chen, E. J. Vasey, and P. D. Whanger, Accumulation and depletion of zinc in rat liver and kidney metallothioneins,J. Nutr. 107, 805–813 (1977).

    PubMed  CAS  Google Scholar 

  17. D. J. Spry and C. M. Wood, The influence of dietary and waterborne zinc on heat-stable metal ligands in rainbow trout,Salmo gairdneri Richardson: quantification by109Cd radioassay and evaluation of the assay,J. Fish Biol. 35, 557–576 (1989).

    Article  CAS  Google Scholar 

  18. E. Carpenè, O. Cattani, G. P. Serrazanetti, G. Fedrizzi, and P. Cortesi, Zinc and copper in fish from natural waters and rearing ponds in Northern Italy,J. Fish Biol. 37, 293–299 (1990).

    Article  Google Scholar 

  19. E. Carpenè, B. Gumiero, G. Fedrizzi, and R. Serra, Trace elements (Zn, Cu, Cd) in fish from rearing ponds of Emilia-Romagna region (Italy),Sci. Total Environ. 141, 139–146 (1994).

    Article  Google Scholar 

  20. R. Hao, R. F. Pfeiffer, and M. Ebadi, Purification and characterization of metallothionein and its activation of pyridoxal phosphokinase in trout (Salmo gairdneri) brain,Comp. Biochem. Physiol. 104B, 293–298 (1993).

    CAS  Google Scholar 

  21. X. Xie and T. G. Smart, A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission.Nature 349, 521–524 (1991).

    Article  PubMed  CAS  Google Scholar 

  22. F. A. Cross, L. H. Hardy, N. J. Jones, and R. T. Barber, Relationship between total body weight and concentrations of manganese, iron, copper, zinc and mercury in white muscle of bluefish (Pomatomus saltatrix) and a bathyldemersal fish (Antimora rostrata),J. Fish. Res. Board Can. 30, 1287–1291 (1973).

    CAS  Google Scholar 

  23. K. D. Shearer, Changes in elemental composition of hatchery-reared rainbow trout,Salmo gairdneri, associated with growth and reproduction,J. Fish Biol. 37, 293–299 (1990).

    Article  Google Scholar 

  24. S. Satoh, T. Takeuchi, and T. Watanabe, Changes of mineral compositions in whole body of rainbow trout during growing stages,Nippon Suisan Gakkaishi 53, 273–279 (1987).

    CAS  Google Scholar 

  25. W. J. Bettger, D. J. Spry, K. A. Cockell, C. Y. Cho, and J. W. Hilton, The distribution of zinc and copper in plasma, erythrocytes and erythrocyte membranes of rainbow trout (Salmo gairdneri),Comp. Biochem. Physiol. 87C, 445–451 (1987).

    CAS  Google Scholar 

  26. D. Knox, C. B. Cowey, and J. W. Adron, Effects of dietary zinc intake upon copper metabolism in rainbow troutSalmo gairdneri, Aquacult. 40, 199–207 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serra, R., Isani, G., Cattani, O. et al. Effects of different levels of dietary zinc on the gilthead,Sparus aurata during the growing season. Biol Trace Elem Res 51, 107–116 (1996). https://doi.org/10.1007/BF02790153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02790153

Index Entries

Navigation