Skip to main content
Log in

Distribution and metabolism of iron in muscles of iron-deficient rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iron-deficiency anemia leads directly to both reduced hemoglobin levels and work performance in humans and experimental animals. In an attempt to observe a direct link between work performance and insufficient iron at the cellular level, we produced severe iron deficiency in female weanling Sprague-Dawley rats following five weeks on a low-iron diet. Deficient rats were compared with normal animals to observe major changes in hematological parameters, body weight, and growth of certain organs and tissues. The overall growth of iron-deficient animals was approximately 50% of normal. The ratio of organ weight: body weight increased in heart, liver, spleen, kidney, brain, and soleus muscle in response to iron deficiency. Further, mitochondria from heart and red muscle retained their iron more effectively under the stress of iron deficiency than mitochondria from liver and spleen.

Metabolism of iron in normal and depleted tissue was measured using tracer amounts of59Fe administered orally. As expected, there was greater uptake of tracer iron by iron-deficient animals. The major organ of iron accumulation was the spleen, but significant amounts of isotope were also localized in heart and brain. In all muscle tissue examined the59Fe preferentially entered the mitochondria. Enhanced mitochondrial uptake of iron prior to any detectable change in the hemoglobin level in experimental animals may be indicative of nonhemoglobin related biochemical changes and/or decrements in work capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ohira, V. R. Edgerton, G. W. Gardner, B. Senewiratne, R. J. Barnard, and D. R. Simpson,Brit. J. Haematol. 41, 365 (1979).

    CAS  Google Scholar 

  2. V. R. Edgerton, S. L. Bryant, C. A. Gillespie, and G. W. Gardner,J. Nutr. 102, 381 (1972).

    PubMed  CAS  Google Scholar 

  3. Y. Ohira, V. R. Edgerton, G. W. Gardner, B. Senewiratne, and D. R. Simpson,Nutr. Rep. Int. 18, 647 (1978).

    CAS  Google Scholar 

  4. P. Ericsson,Acta Med. Scand. 188, 361 (1970).

    Article  PubMed  CAS  Google Scholar 

  5. Y. Ohira, PhD Dissertation, University of Southern California (1980).

  6. R. P. Cusack and W. D. Brown,J. Nutr. 86, 383 (1965).

    PubMed  CAS  Google Scholar 

  7. P. R. Dallman and H. C. Schwartz,Pediatrics 35, 677 (1965).

    PubMed  CAS  Google Scholar 

  8. P. R. Dallman and H. C. Schwartz,J. Clin. Invest. 44, 1631 (1965).

    Article  PubMed  CAS  Google Scholar 

  9. C. A. Finch, L. R. Miller, A. R. Inamdar, R. Person, K. Seiler, and B. Mackler,J. Clin. Invest. 58, 447 (1976).

    PubMed  CAS  Google Scholar 

  10. P. R. Dallman,J. Nutr. 97, 475 (1969).

    PubMed  CAS  Google Scholar 

  11. C. A. Finch, P. D. Gollnick, M. P. Hlastala, L. R. Miller, E. Dillmann, and B. Mackler,J. Clin. Invest. 64, 129 (1979).

    PubMed  CAS  Google Scholar 

  12. B. J. Koziol, Y. Ohira, D. R. Simpson, and V. R. Edgerton,J. Nutr. 108, 1306 (1978).

    PubMed  CAS  Google Scholar 

  13. I. Gutmann and A. W. Wahlefeld,Methods of Enzymatic Analysis,3, 1464 (1978).

    Google Scholar 

  14. D. Carmichael, J. Christopher, J. Hegenauer, and P. Saltman,Am. J. Clin. Nutr. 28, 487 (1975).

    PubMed  CAS  Google Scholar 

  15. J. B. Chappell and S. V. Perry,Nature 173, 1094 (1954).

    Article  PubMed  CAS  Google Scholar 

  16. T. O. Kleine and W. D. Steinman,Res. Exp. Med. 172, 19 (1978).

    Article  CAS  Google Scholar 

  17. L. A. Sordahl, D. Johnson, Z. R. Blailock, and A. Schwartz,Methods Pharmacol. 1, 247 (1971).

    CAS  Google Scholar 

  18. E. H. Hartree,Anal. Biochem. 48, 422 (1972).

    Article  PubMed  CAS  Google Scholar 

  19. S. Marklund,Clin. Chim. Acta 92, 229 (1979).

    Article  PubMed  CAS  Google Scholar 

  20. P. R. Dallman, inIron in Biochemistry and Medicine, A. Jacobs and M. Worwood, ed, Academic Press, New York, p. 437.

  21. J. R. Goodman, J. B. Warshaw, and P. R. Dallman,Pediat. Res. 4, 244 (1970).

    Article  PubMed  CAS  Google Scholar 

  22. A. Hunter,Quart. J. Med. New Ser. 15, 107 (1946).

    CAS  Google Scholar 

  23. H. Rothenbacher and A. R. Sherman,J. Nutr. 110, 1648 (1980).

    PubMed  CAS  Google Scholar 

  24. J. Hegenauer, L. Ripley, and P. Saltman, inProteins of Iron Metabolism, E. B. Brown, P. Aisen, J. Fielding, and R. R. Crichton, eds., Grune and Stratton, 1977, New York, p. 403.

    Google Scholar 

  25. S. Pollack, R. M. Kaufman, and W. H. Crosby,Science 144, 1015 (1964).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohira, Y., Hegenauer, J., Saltman, P. et al. Distribution and metabolism of iron in muscles of iron-deficient rats. Biol Trace Elem Res 4, 45–56 (1982). https://doi.org/10.1007/BF02789133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789133

Index Entries

Navigation