Skip to main content
Log in

Elemental composition of human milk from mothers of premature and full-term infants during the first 3 months of lactation

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To examine longitudinal and gestational effects of mineral content in human milk, we analyzed human milk from lactating mothers of premature (PRT,n = 24, < 2000g birth weight, < 37 wk gestation) and fullterm (FT,n = 19, > 2500g, 39–41 wk gestation), living in Newfoundland, Canada. Samples were collected once a week for 8 wk with one final sample collected at 3 mo. Milk samples collected in acid-washed containers were wet ashed with concentrated HNO3, and barium, cadmium, calcium, cesium, cobalt, copper, cerium, lanthanum, magnesium, manganese, molybdenum, nickel, lead, rubidium, tin, strontium, and zinc were measured using inductively coupled plasma-mass spectrometry. Data were analyzed using standard multiple-regression procedures with correlated data analyses to take account of the relationship between successive weeks. Results indicated lower Ca and Pb in PRT milk. Calcium was the only nutritionally significant element to differ between groups. Molybdenum in both PRT and FT milk showed a definite decrease with time, suggesting that the Mo content in milk is homeostatically regulated. However, Ce, La, Ba, and Sn did not display any pattern indicative of biological regulation and potential human requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Lonnerdal, Effects of maternal dietary intake on human milk composition,J. Nutr. 116, 499–513 (1986).

    PubMed  CAS  Google Scholar 

  2. F. H. Nielsen, Ultra-trace elements in nutrition,Ann. Rev. Nutr. 14, 21–41 (1984).

    Article  Google Scholar 

  3. J. K. Friel and T. Alkanani, Ultra-trace elements in human milk,Life Sci. Adv. 12, 95–101 (1993).

    Google Scholar 

  4. F. H. Nielsen, Ultra-trace elements: An update, inTrace Elements in Clinical Medicine, H. Timto, ed., Springer-Verlag, Tokyo, pp. 353–360 (1990).

    Google Scholar 

  5. R. M. Feeley, R. R. Eitenmiller, J. B. Jones, Jr., and H. Barnhart, Copper, iron and zinc contents of human milk at early stages of lactation,Am. J. Clin. Nutr. 37, 443–448 (1983).

    PubMed  CAS  Google Scholar 

  6. E. Vuori, S. M. Makinen, R. Kara, and P. Kuitunen, The effects of the dietary intakes of copper, iron, manganese, and zinc on the trace element content of human milk,Am. J. Clin. Nutr. 33, 227–231, (1980).

    PubMed  CAS  Google Scholar 

  7. G. H. Anderson, Human milk feeding,Pediatr. Clin. North Am. 32(2), 335–353 (1985).

    PubMed  CAS  Google Scholar 

  8. C. E. Casey, M. C. Neville, and K. M. Hambidge, Studies in human lactation: secretion of zinc, copper and manganese in human milk,Am. J. Clin. Nutr. 49, 773–785 (1989).

    PubMed  CAS  Google Scholar 

  9. S. F. Durrant and N. I. Ward, Multi-elemental analysis of human milk by inductively coupled plasma-source mass spectrometry: implications for infant health,J. Microsc. Anal. 5, 111–126 (1989).

    CAS  Google Scholar 

  10. WHO/IAEA,Minor and Trace Elements in Breast Milk, World Health Organization Geneva (1989).

  11. S. Atkinson, Effects of gestational age at delivery on human milk components, inHandbook of Milk Composition, R. G. Jensen, ed., Academic, San Diego, pp. 222–236 (1995).

    Google Scholar 

  12. S. Caroli, A. Alimonti, P. D. Femmine, F. Petrucci, O. Senofonte, and N. Vilante, Role of inductively coupled plasma emission spectrometry in the assessment of reference values for trace elements in biological matrices,J. Analyt. At. Spec. 7, 859–864 (1992).

    Article  CAS  Google Scholar 

  13. R. M. Parr, E. M. DeMaeyer, V. G. Iyengar, A. R. Byrne, G. F. Kirkbright, G. Schoch, et al., Minor and trace elements in human milk from Guatemala, Hungary, Nigeria, Philippines, Sweden and Zaire,Biol. Trace Element 29, 51–75 (1991).

    CAS  Google Scholar 

  14. T. Alkanani, J. K. Friel, S. E. Jackson, and H. P. Longerich, Comparison between digestion procedures for the multi elemental analysis of milk by inductively coupled plasma mass spectrometry,J. Agric. Food Chem. 42, 1965–1970 (1994).

    Article  CAS  Google Scholar 

  15. J. K. Friel, C. S. Skinner, S. E. Jackson, and H. P. Longerich, Analysis of biological reference materials, prepared by microwave dissolution, using inductively coupled plasma mass spectrometry,Analyst 115, 269–273 (1990).

    Article  PubMed  Google Scholar 

  16. R. H. Jones,Longitudinal Data and Serial Correlation: A State-Space Approach, Chapman & Hall, London(1993).

    Google Scholar 

  17. N. H. Nie, C. H. Hull, J. G. Jenkins, K. Steinbrennar, and D. H. Bent,Statistical Package for the Social Sciences (SPSSx), McGraw-Hill, New York (1975).

    Google Scholar 

  18. J. Yoshinaga, J. Li, and S. Tsuguyoshi, Trace elements in human transitory milk — vari-ation caused by biological attributes of mother and infant,Biol. Trace Element Res. 31, 159–169 (1991).

    CAS  Google Scholar 

  19. L. Perrone, L. D. Palma, R. D. Toro, G. Gialanella, and R. Moro, Interaction of trace elements in a longitudinal study of human milk from FT and PRT mothers,Biol. Trace Element Res. 41, 321–329 (1994).

    Article  CAS  Google Scholar 

  20. M. V. Karra, S. A. Udipi, A. Kirksey, and J. L. B. Roepke, Changes in specific nutrients in breast milk during extended lactation,Am. J. Clin. Nutr. 43, 495–503 (1986).

    PubMed  CAS  Google Scholar 

  21. E. Vuori and P. Kuitunen, The concentrations of copper and zinc in human milk,Acta Paediatr. Scand. 68, 33–37 (1979).

    PubMed  CAS  Google Scholar 

  22. R. R. Anderson, Longitudinal changes of trace elements in human milk during the first 5 months of lactation,Nutr. Res. 13, 499–510 (1993).

    Article  CAS  Google Scholar 

  23. E. Vuori, Intake of copper, iron, manganese and zinc by healthy, exclusively-breastfed infants during the first 3 months of life,Br. J. Nutr. 42, 407–411 (1979).

    Article  PubMed  CAS  Google Scholar 

  24. H. J. Sternowsky and R. Wessolowski, Lead and cadmium in breast milk,Arch. Toxicol. 57, 41–45 (1985).

    Article  PubMed  CAS  Google Scholar 

  25. E. Vuori, M. Vetter, P. Kuitunen, and S. Salmela, Cadmium in Finnish breast milk, a longitudinal study,Arch. Toxicol. 53, 207–211 (1983).

    Article  PubMed  CAS  Google Scholar 

  26. M. N. Berner, T. R. Shuler, F. H. Nielsen, C. Flombaum, S. A. Farkouh, and M. Shike, Selected ultratrace elements in total parenteral nutrition solutions,Am. J. Clin. Nut. 50, 1079–1083 (1989).

    CAS  Google Scholar 

  27. R. M. Smith, Cobalt, inTrace Elements in Human and Animal Nutrition, 5th ed., W. Mertz, ed., Academic, San Diego, Vol. 1, pp. 143–183 (1987).

    Google Scholar 

  28. S. J. Fomon,Nutrition of Normal Infants, Mosby, St. Louis (1993).

    Google Scholar 

  29. J. A. Lemons, D. Hall, and M. Simmons, Differences in the composition of preterm and term human milk during lactation,Pediatr. Res. 16, 113–117 (1982).

    Article  PubMed  CAS  Google Scholar 

  30. Nutrition Committee, Meeting the iron needs of infants and young children: an update,CMAJ 148, 1451–1454 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friel, J.K., Andrews, W.L., Jackson, S.E. et al. Elemental composition of human milk from mothers of premature and full-term infants during the first 3 months of lactation. Biol Trace Elem Res 67, 225–247 (1999). https://doi.org/10.1007/BF02784423

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784423

Index Entries

Navigation