Skip to main content
Log in

Relationship between biliary excretion of bilirubin and glutathione disulfide

  • Liver, Pancereas, and Biliary Tract
  • Published:
Gastroenterologia Japonica Aims and scope Submit manuscript

Summary

The effects of two glutathione-oxidizing agents, t-butyl hydroperoxide and diamide, on biliary excretion of bilirubin and glutathione disulfide were investigated in anesthetized male Sprague-Dawley rats. Bilirubin (unconjugated) was infused at a constant rate of 100 nmol/kg/min through the jugular vein. When biliary excretion of bilirubin was stabilized, either of the glutathione-oxidizing agents was administered via the mesenteric vein. Biliary excretion of glutathione disulfide increased temporarily after the administration and returned to its basal levels within 20 min. The biliary excretion of bilirubin decreased during the same period and returned to the former levels thereafter. Changes in bile flow rates remained within 20% of the basal levels. A linear correlation was found between the increments in the bile concentration of glutathione disulfide and the decrements in that of bilirubin. Furthermore, separate experiments revealed that reduction of hepatocellular glutathione per se had little effect on biliary excretion of bilirubin. The results thus indicate that the reduction of biliary excretion of bilirubin by glutathione-oxidizing agents was due to the increase in biliary excretion of glutathione disulfide, and suggest that a common biliary excretory mechanism is shared, at least partially, by bilirubin and glutathione disulfide in Sprague-Dawley rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meier PJ, St. Meier-Abt A, Boyer JL. Properties of the canalicular bile acid transport system in rat liver. Biochem J 1987;242:465–469.

    PubMed  CAS  Google Scholar 

  2. Sippel CJ, Ananthanarayanan M, Suchy FJ. Isolation and characterization of the canalicular membrane bile acid transport protein of rat liver. Am J Physiol 1990;258:G728-G737.

    PubMed  CAS  Google Scholar 

  3. Wolkoff AW, Chung CT. Identification, purification, and partial characterization of an organic anion binding protein from rat liver cell plasma membrane. J Clin Invest 1980;65:1152–1161.

    PubMed  CAS  Google Scholar 

  4. Tiribelli C, Lunazzi G, Luciani M, et al. Isolation of sulfobromophthalein-binding protein from hepatocyte plasma membrane. Biochim Biophys Acta 1978;532:105–112.

    PubMed  CAS  Google Scholar 

  5. Reichen J, Berk PD. Isolation of organic anion binding protein from rat liver plasma membrane fractions by affinity chromatography. Biochem Biophys Res Commun 1979;91:484–489.

    Article  PubMed  CAS  Google Scholar 

  6. Scharschmidt BF. Biliary secretion of bile pigments. In: Ostrow JD, ed. Bile Pigments and Jaundice. New York: Dekker, 1986;243–253.

    Google Scholar 

  7. Lauterburg BH, Smith CV, Hughes H, et al. Biliary excretion of glutathione and glutathione disulfide in the rat; regulation and response to oxidative stress. J Clin Invest 1984;73:124–133.

    PubMed  CAS  Google Scholar 

  8. Akerboom T, Bilzer M, Sies H. Relation between glutathione redox changes and biliary excretion of taurocholate in perfused rat liver. J Biol Chem 1984;259:5838–5843.

    PubMed  CAS  Google Scholar 

  9. Akerboom T, Inoue M, Sies H, et al. Biliary transport of glutathione disulfide studied with isolated rat-liver canalicular-membrane vesicles. Eur J Biochem 1984;141:211–215.

    Article  PubMed  CAS  Google Scholar 

  10. Akerboom T, Inoue M, Sies H, et al. Biliary transport of glutathione disulfide studied with isolated rat-liver canalicular membrane vesicles. Eur J Biochem 1984;141:211–215.

    Article  PubMed  CAS  Google Scholar 

  11. Inoue M, Akerboom T, Sies H, et al. Biliary transport of glutathione S-conjugate by rat liver canalicular membrane vesicles. J Biol Chem 1984;259:4998–5002.

    PubMed  CAS  Google Scholar 

  12. Jansen PLM, Peters HM, Lamers WH. Hereditary chronic conjugated hyperbilirubinemia in mutant rats caused by defective hepatic anion transport. Hepatology 1985;5:573–579.

    Article  PubMed  CAS  Google Scholar 

  13. Jansen PLM, Groothuis GMM, Peters WHM, et al. Selective hepatobiliary transport defect for organic anions and neutral steroids in mutant rats with hereditary-conjugated hyperbilirubinemia. Hepatology 1987;7:71–76.

    Article  PubMed  CAS  Google Scholar 

  14. Oude Elferink R, Ottenhoff R, Liefting W, et al. Hepatobiliary transport of glutathione and glutathione conjugate in rats with hereditary hyperbilirubinemia. J Clin Invest 1989;84:476–483.

    Google Scholar 

  15. Takikawa H, Sano N, Narita T, et al. Biliary excretion of bile acid conjugates in a hyperbilirubinemic mutant Sprague-Dawley rat. Hepatology 1991;14:352–360.

    PubMed  CAS  Google Scholar 

  16. Kurisu H, Kamisaka K, Koyo T, et al. Organic anion transport study in mutant rats with autosomal recessive conjugated hyperbilirubinemia. Life Sci 1991;49:1003–1011.

    Article  PubMed  CAS  Google Scholar 

  17. Oude Elferink R, Ottenhoff R, Liefting WGM, et al. ATP-dependent efflux of GSSG and GS-conjugate from isolated rat hepatocytes. Am J Physiol 1990;258:G699-G706.

    Google Scholar 

  18. Kitamura T, Jansen P, Hardenbrook C, et al. Defective ATP-dependent bile canalicular transport of organic anions in mutant (TR-)rats with conjugated hyperbilirubinemia. Proc Natl Acad Sci USA 1990;87:3557–3561.

    Article  PubMed  CAS  Google Scholar 

  19. Adachi Y, Kobayashi H, Kurumi Y, et al. Bilirubin diglucuronide transport by rat liver canalicular membrane vesicles: stimulation by bicarbonate ion. Hepatology 1991;14:1251–1258.

    PubMed  CAS  Google Scholar 

  20. Clarenburg R, Kao CC. Shared and separate pathways for biliary excretion of bilirubin and BSP in rats. Am J Physiol 1973;225:192–200.

    PubMed  CAS  Google Scholar 

  21. Gregue Z. Stein AF, Klaassen CD. Effect of inhibition of γ-glutamyltranspeptidase on biliary and urinary excretion of glutathionederived thiols and methylercury. J Pharm Exp Ther 1987;242:27–32.

    Google Scholar 

  22. Fernandez-Checa JC, Ookhtens M, Kaplowitz N. Effect of chronic ethanol feeding on rat hepatocytic glutathione. J Clin Invest 1989;83:1247–1253.

    PubMed  CAS  Google Scholar 

  23. Sies H, Summer KH. Hydroperoxide-metabolizing systems in rat liver. Eur J Biochem 1975;57:503–512.

    Article  PubMed  CAS  Google Scholar 

  24. Kosower EM, Correa W, Kinon BJ. Glutathione VII. Differentiation among substrates by the thiol-oxidizing agent, Diamide. Biochim Biophys Acta 1972;264:39–44.

    PubMed  CAS  Google Scholar 

  25. Griffith OW. Depletion of glutathione by inhibition of biosynthesis. Meth Enzymol 1981;77:59–63.

    Article  PubMed  CAS  Google Scholar 

  26. Boyland E, Chasseaud LF. The effect of some carboxyl compounds on rat liver glutathione levels. Biochem Pharmacol 1970; 19:1526–1528.

    Article  PubMed  CAS  Google Scholar 

  27. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione; applications to mammalian blood and other tissues. Anal Biochem 1969;27: 502–522.

    Article  PubMed  CAS  Google Scholar 

  28. Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 1980;106:207–212.

    Article  PubMed  CAS  Google Scholar 

  29. Eberle D, Clarke R, Kaplowitz N. Rapid oxidation in vitro of endogenous and exogenous glutathione in bile of rats. J Biol Chem 1981;256:2115–2117.

    PubMed  CAS  Google Scholar 

  30. Kosaka A. Total Bilirubin. In: Bergmeyer HU, ed. Methods of Enzymatic Analysis (3rd Ed) Vol 8. Weinheim: VCH Verlags, 1985;591–598.

    Google Scholar 

  31. Yoshida H, Kuronuma Y, Iijima M, et al.The relationship between biliary secretion of bilirubin and glutathione in the rat. Gastroenterol Jpn 1992;27:369–373.

    PubMed  CAS  Google Scholar 

  32. Zimniak P, Ziller S, Panfil I, et al. Identification of anion-transport ATPase that catalyzes glutathione conjugate-dependent ATP hydrolysis in canalicular plasma membranes from normal rats and rats with conjugated hyperbilirubinemia (GY mutant). Arch Biochem Biophys 1992;292:534–538.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuronuma, Y., Yoshida, H., Iijima, M. et al. Relationship between biliary excretion of bilirubin and glutathione disulfide. Gastroenterol Jpn 28, 292–297 (1993). https://doi.org/10.1007/BF02779233

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02779233

Key words

Navigation