Skip to main content
Log in

Changes in the topological state of DNA duringEscherichia coli adaptation to oxidative stress under glucose starvation and after the transition to growth

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Changes in the topological state of DNA occur in a starvingEscherichia coli culture under oxidative stress caused by the addition of hydrogen peroxide. The addition of a carbon and energy source to this culture results in a second stress reaction. This supports previous data indicating that different mechanisms are responsible for the cell defense against oxidative stress in exponential and starvingE. coli cultures. Polyamine synthesis is involved in the cell adaptation to the stress. Putrescine binding to DNA and its dissociation seem to modulate the DNA topological state, which regulates the expression of the adaptive genes. An increase in the activity of the polyamine-synthesizing system in response to oxidative stress leads to a putrescine flux across the cytoplasmic membrane, due to which the antioxidant activity of putrescine protects the membrane phospholipids and contributes to the restoration of the cell energy-generating function

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Demple, B., Redox Signaling and Gene Control in theEscherichia coli soxRS Oxidative Stress Regulon: A Review,Gene, 1996, vol. 179, pp. 53–57.

    Article  PubMed  CAS  Google Scholar 

  2. Gonzalez Flecha, B. and Demple, B., Transcriptional Regulation of theEscherichia coli oxyR Gene as a Function of Cell Growth,J. Bacteriol., 1997, vol. 179, pp. 6181–6186.

    PubMed  CAS  Google Scholar 

  3. Eisenstark, A., Calcutt, M.S., Becker Hapak, M., and Ivanova, A., Role ofEscherichia coli rpoS and Associated Genes in Defence Against Oxidative Damage,Free Radical Biol. Med., 1996, vol. 21, no. 7, pp. 975–983.

    Article  CAS  Google Scholar 

  4. Wang, J.Y. and Syvanen, M., DNA Twist as a Transcriptional Sensor for Environmental Changes,Mol. Microbiol., 1992, vol. 6, no. 14, pp. 1861–1866.

    Article  PubMed  CAS  Google Scholar 

  5. Mencel, R. and Geliert, M., Regulation of Genes forEscherichia coli DNA Girase: Homeostatic Control of DNA Supercoiling,Cell, 1983, vol. 34, pp. 105–113.

    Article  Google Scholar 

  6. van Workum, M., van Dooren, S.J., Oldenburg, N., Molenaar, D., Jensen, P.R., Snoep, J.L., and Westerhoff, H.V., DNA Supercoiling Depends on the Phosphorylation Potential inEscherichia coli, Mol. Micmbiol, 1996, vol. 20, no. 2, pp. 351–360.

    Google Scholar 

  7. Tkachenko, A.G., Salakhetdinova, O.Ya., and Pshenichnov, M.R., Putrescine/Potassium Exchange as an Adaptive Responseof Escherichia coli to Hyperosmotic Stress,Mikrobiologiya, 1997, vol. 66, no. 3, pp. 329–334.

    CAS  Google Scholar 

  8. Tkachenko, A.G. and Chudinov, A.A., Exchange of Polyamines between the Cell and the Medium as One of the Factors Determining the Development of Fed-Batch Cultures ofEscherichia coli, Mikwbiologiya, 1989, vol. 58, no. 4, pp. 584–590.

    CAS  Google Scholar 

  9. Atkinson, D.E., Adenylate Energy Charge Is a Key Factor,Trends Biochem. Sci., 1977, vol. 2, pp. 198–200.

    Article  Google Scholar 

  10. Itnlay, J.A. and Linn, S., DNA Damage and Oxygen Radical Toxicity,Science, 1988, vol. 240, pp. 1302–1309.

    Article  Google Scholar 

  11. Tkachenko, A.G., Pshenichnov, M.R., Salakhetdinova, O.Ya., and Nesterova, L.Yu., The Role of Putrescine and the Energy State ofEscherichia coli in the Regulation of DNA Topology during the Adaptation to Oxidative Stress,Mikwbiologiya, 1999, vol. 68, no. 1, pp. 27–32.

    CAS  Google Scholar 

  12. Ha, H.C., Sirisoma, N.S., Kuppusamy, P., Zweier, J.L., Woster, P.M., and Casero, R.A., The Natural Polyamine Spermine Functions Directly as a Free Radical Scavenger,Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 11140–11145.

    Article  PubMed  CAS  Google Scholar 

  13. Kashiwagi, K., Kobayashi, H., and Igarashi, K., Apparently Unidirectional Polyamine Transport by the Proton Motive Force in Polyamine-DeficientEscherichia coli, J. Bacteriol., 1986, vol. 165, pp. 972–977.

    PubMed  CAS  Google Scholar 

  14. Urios, A., Herrera, G., Aleixandre, V., and Blanco, M., Expression ofrecA Gene Is Reduced inEscherichia coli Topoisomerase I Mutants,Mutation Res., 1990, vol. 243, pp. 267–272.

    Article  PubMed  CAS  Google Scholar 

  15. Tadolini, B., Polyamine Inhibition of Lipoperoxidation,Biochem. J., 1988, vol. 249, pp. 33–36.

    PubMed  CAS  Google Scholar 

  16. Balke, V.L. and Gralla, G.D., Changes in the Linking Number of Supercoiled DNA Accompany Growth Transitions inEscherichia coli, J. Bacteriol., 1987, vol. 169, pp. 4499–4506.

    PubMed  CAS  Google Scholar 

  17. Tkachenko, A.G. and Chudinov, A.A., Participation of Putrescine in the Antiport Mechanism of Potassium Transport inEscherichia coli, Curr. Microbiol., 1994, vol. 28, pp. 81–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salakhetdinova, O.Y., Pshenichnov, M.R., Nesterova, L.Y. et al. Changes in the topological state of DNA duringEscherichia coli adaptation to oxidative stress under glucose starvation and after the transition to growth. Microbiology 69, 58–62 (2000). https://doi.org/10.1007/BF02757258

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02757258

Key words

Navigation