Skip to main content
Log in

Behavioral and neurochemical changes in the dopaminergic system after repeated cocaine administration

  • Proceedings of the Symposium Cellular and Molecular Mechanisms of Drugs of Abuse Cocaine and Methamphetamine held in Nice, France, August 19–20, 1993
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In order to determine whether repeated cocaine administration produced persistent changes in dopamine (DA) receptor binding and release consistent with behavioral sensitization, rats were treated with either cocaine (25 mg/kg ip) or saline twice daily for 14 consecutive days followed by a 3-d withdrawal period. The DA transporter site was assayed using [3H]GBR 12935, whereas D1 and D2 sites were assayed using [3H]SCH 23390 and [3H]spiperone, respectively. The density (B max) of the DA transporter binding sites in the ST of the cocaine-treated group increased significantly (p<0.05) over controls 3 d after the last injection, whereas the density of striatal D1 and D2 binding sites remained unchanged. The DA transporter in the nucleus accumbens (NA) was also studied with [3H]GBR 12935 and was unchanged following drug treatment. D1 and D2 binding parameters for the NA were not determined in this study. Furthermore, cocaine administration did not affect the affinities (K d ) of the radioligands used to label the transporter, D1, or D2 sites in any of the studies performed. In addition, striatal DA release was measured using in vivo microdialysis in anesthetized rats. Linear regression analysis on maximal decreases in DA release after apomorphine (0.02, 0.2, and 2.0 mg/kg sc) injection showed no difference in the functional capacity of the ST to modulate DA transmission between control and treated groups. Moreover, animals pretreated with cocaine showed a significant (p<0.01) decrease in locomotor activity (LA) after a presynaptic, autoregulating dose of apomorphine (0.03 mg/kg sc) was given. These results suggest that the effects seen after repeated exposure to cocaine may be regulated, in part, by changes in striatal DA transporter binding site densities and not necessarily by DA-releasing mechanisms or D1 and D2 receptor modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DA:

dopamine

NA:

nucleus accumbens

ST:

striatum

LA:

locomotor activity

STB:

stereotypic behavior

References

  • Akunne H. C., Johannessen J. N., DeCosta B. R., Rice K. C., and Rothman R. B. (1992) MPTP lesions of the nigrostriatal dopaminergic projection decrease [3H]1-[1-(2-theinyl)cyclohexyl]piperidine binding to PCP site 2: further evidence that PCP site 2 is associated with the biogenic amine reuptake complex.Neurochem. Res. 17, 261–264.

    Article  PubMed  CAS  Google Scholar 

  • Allard P., Eriksson K., Ross S. B., and Marcusson J. O. (1990) Unaltered [3H]GBR-12935 binding after chronic treatment with dopamine active drugs.Psychopharmacology 102, 291–294.

    Article  PubMed  CAS  Google Scholar 

  • Bannon M. J. and Roth R. H. (1983) Pharmacology of mesocortical dopamine neurons.Pharmacol. Rev. 35, 53–68.

    PubMed  CAS  Google Scholar 

  • Billard W., Ruperto V., Croshy G., Iorio L. C., and Barnett A. (1984) Characterization of the binding of [3H]SCH 23390, a selective D1 receptor antagonist ligand in rat striatum.Life Sci. 35, 1885–1893.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Cheng P., Dersch C. M., Emilien B., Rothman R. B., and Cadet J. L. (1993) Chronic cocaine enhances RTI-55 labelled DA uptake sites in the striatum.NIDA Res. Monogr. 141, 252.

    Google Scholar 

  • Claye L. H. and Soliman K. F. A. (1990) Effect of acute cocaine administration on the cholinergic enzyme levels of specific brain regions in the rat.Pharmacology 40, 218–223.

    Article  PubMed  CAS  Google Scholar 

  • Dwoskin L. P., Peris J., Yasuda R. P., Philpott K., and Zahniser N. R. (1988) Repeated cocaine administration results in supersensitivity of striatal D2 dopamine autoreceptors to pergolide.Life Sci. 42, 255–262.

    Article  PubMed  CAS  Google Scholar 

  • Dwoskin L. P. and Zahniser N. R. (1986) Robust modulation of [3H]dopamine release from striatal slices by D2 dopamine receptors.J. Pharmacol. Exp. Ther. 239, 442–453.

    PubMed  CAS  Google Scholar 

  • Farfel G. M., Kleven M. S., Woolverton W. L., Seiden L. S., and Perry B. D. (1992) Effects of repeated injections of cocaine on catecholamine receptor binding sites, dopamine transporter binding sites and behavior in rhesus monkey.Brain Res. 578, 235–243.

    Article  PubMed  CAS  Google Scholar 

  • Graham D. and Langer S. Z. (1992) Advances in sodium-ion coupled biogenic amine transporters.Life Sci. 51, 631–645.

    Article  PubMed  CAS  Google Scholar 

  • Horn A. S. (1978) Characteristics of neuronal dopamine uptake.Adv. Biochem. Psychopharmacol. 19, 25–34.

    PubMed  CAS  Google Scholar 

  • Iversen L. L. (1973) Catecholamine uptake processes.Br. Med. Bull. 29, 130–135.

    PubMed  CAS  Google Scholar 

  • Izenwasser S. and Cox B. M. (1990) Daily cocaine treatment produces a persistent reduction of [3H]dopamine uptake in vitro in rat nucleus accumbens but not in striatum.Brain Res. 53, 338–341.

    Article  Google Scholar 

  • Johanson C. E. and Fischman M. W. (1989) The pharmacology of cocaine related to its abuse.Pharmacol. Rev. 41, 3–52.

    PubMed  CAS  Google Scholar 

  • Kalivas P. W., Duffy P., DuMars L. A., and Skinner C. (1988) Behavioral and neurochemical effects of acute and daily cocaine administration in rats.J. Pharmacol. Exp. Ther. 245, 485–492.

    PubMed  CAS  Google Scholar 

  • Kleven M. S., Perry B. D., Woolverton W. L., and Seiden L. S. (1990) Effects of repeated injections of cocaine on D1 and D2 dopamine receptors in rat brain.Brain Res. 532, 265–270.

    Article  PubMed  CAS  Google Scholar 

  • Kuhar M. J., Sanchez-Roa P. M., Wong D. F., Dannals R. F., Grigoriadis D. E., Lew R., and Milberger, M. (1990) Dopamine transporter: biochemistry, pharmacology and imaging.Eur. Neurol. 30 (Suppl. 1), 15–20.

    PubMed  Google Scholar 

  • Kula N. S. and Baldessarini R. J. (1991) Lack of increase in dopamine transporter binding or function in rat brain tissue after treatment with blockers of neuronal uptake of dopamine.Neuropharmacology 30, 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M., Jaski G. E., Lipska B. K., Kolachana B., Casanova M. F., Kleinman J. E., and Weinberger D. R. (1992) D1 and D2 receptor modulation in rat striatum and nucleus accumbens after subchronic and chronic haloperidol treatment.BrainRes. 575, 47–56.

    CAS  Google Scholar 

  • Lew R., Vaughan R., Simantov R., Wilson A., and Kuhar M. J. (1991) Dopamine transporters in the nucleus accumbens and the striatum have different apparent molecular weights.Synapse 8, 152–153.

    Article  PubMed  CAS  Google Scholar 

  • Lundeen J. E. and Gordon J. H. (1986) Computer analysis of binding data, inReceptor Binding in Drug Research (O’Brien R. A., ed.), Marcel Dekker Inc., New York, pp. 31–49.

    Google Scholar 

  • Mayfield R. D., Larson G., and Zahniser N. R. (1992) Cocaine-induced behavioral sensitization and D1 dopamine receptor function in rat nucleus accumbens and striatum.Brain Res. 573, 331–335.

    Article  PubMed  CAS  Google Scholar 

  • Naylor R. J. and Costall B. (1971) The relationship between the inhibition of dopamine uptake and the enhancement of amphetamine stereotypies.Life Sci. 10, 909–915.

    Article  CAS  Google Scholar 

  • Paxinos G. and Watson C. (1986)The Rat Brain in Stereotaxic Coordinates, Academic, Orlando, FL.

    Google Scholar 

  • Peris J., Boyson S. J., Cass W. A., Currella P., Dowskin L. P., Larson G., Lin L. H., Yasuda R. P., and Zahniser N. R. (1990) Persistence of neurochemical changes in dopamine systems after repeated cocaine administration.J. Pharmacol. Exp. Ther. 253, 38–44.

    PubMed  CAS  Google Scholar 

  • Pert A., Post R., and Weiss S. R. B. (1990) Conditioning as a critical determinant of sensitization induced by psychomotor stimulants.NIDA Res. Monogr. 97, 208–241.

    PubMed  CAS  Google Scholar 

  • Pugsley T. A., Coughenour L. L., Meyers S. L., Shih Y. H., Courtland G. G., Berghoff W., and Stewart S. F. (1989) CI-943; a potential antipsychotic agent, II. Neurochemical effects.J. Pharmacol. Exp. Ther. 251, 113–122.

    PubMed  CAS  Google Scholar 

  • Ritz M. J., Lamb R. J., Goldberg S. R., and Kuhar M. J. (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine.Science 237, 1219–1223.

    Article  PubMed  CAS  Google Scholar 

  • Robinson T. E. and Becker J. B. (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis,Brain Res. Rev. 11, 157–198.

    Article  CAS  Google Scholar 

  • SAS/STAT (1988)User’s Guide, release 6.03 ed. SAS Institute, Cary, NC.

    Google Scholar 

  • Schulz D. W., Standford E. J., Wyrick S. W., and Mailman R. B. (1985) Binding of [3H]SCH 23390 in rat brain: regional distribution and effects of assay conditions and GTP suggest interactions at a D1-like dopamine receptor.J. Neurochem. 45, 1601–1611.

    Article  PubMed  CAS  Google Scholar 

  • Sharpe L. G., Pilotte N. S., Mitchell W. M., and DeSouza E. B. (1991) Withdrawal of repeated cocaine decreases autoradiographic [3H]mazindol-labelling of dopamine transporter in rat nucleus accumbens.Eur. J. Pharmacol. 203, 141–144.

    Article  PubMed  CAS  Google Scholar 

  • Snyder S. H. (1973) Amphetamine psychosis: a “model” schizophrenia mediated by catecholamines.Am. J. Psychiatry 130, 61–67.

    PubMed  CAS  Google Scholar 

  • Steketee J. D., Striplin C. D., Murray T. F., and Kalivas P. W. (1991) Possible role for G-proteins in behavioral sensitization to cocaine.Brain Res. 545, 287–291.

    Article  PubMed  CAS  Google Scholar 

  • Striplin C. D. and Kalivas P. W. (1992) Correlation between behavioral sensitization to cocaine and G-protein ADP-ribosylation in the ventral tegmental area.Brain Res. 579, 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U. (1984) Measurement of neurotransmitter release by intracranial dialysis, inMeasurement of Neurotransmitter Release In Vivo (Marsden C. A., ed.), Wiley, New York, pp. 81–105.

    Google Scholar 

  • Yi S. J. and Johnson K. M. (1990) Chronic cocaine treatment impairs the regulation of synaptosomal [3H]DA release by D2 autoreceptors.Pharmacol. Biochem. Behav. 36, 457–461.

    Article  PubMed  CAS  Google Scholar 

  • Zahniser N. R., Peris J, Dwoskin L. P., Currella P., Yasuda R. P., O’Keefe L., and Boyson S. J. (1988) Sensitization to cocaine in the nigrostriatal dopamine system.NiDA Res. Monogr. 88, 55–77.

    PubMed  CAS  Google Scholar 

  • Zeigler S., Lipton J., Toga A., and Ellison G. (1991) Continuous cocaine administration produces persisting changes in brain neurochemistry and behavior.Brain Res. 552, 27–35.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claye, L.H., Akunne, H.C., Duff Davis, M. et al. Behavioral and neurochemical changes in the dopaminergic system after repeated cocaine administration. Mol Neurobiol 11, 55–66 (1995). https://doi.org/10.1007/BF02740684

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02740684

Index Entries

Navigation