Skip to main content
Log in

Phyletic size change and brain/body allometry: A consideration based on the African pongids and other primates

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

A problematic aspect of brain/body allometry is the frequency of interspecific series which exhibit allometry coefficients of approximately 0.33. This coefficient is significantly lower than the 0.66 value which is usually taken to be the interspecific norm. A number of explanations have been forwarded to account for this finding. These include (1) intraspecificallometry explanations, (2) nonallometric explanations, and (3) Jerison’s “extraneurons” hypothesis, among others. The African apes, which exhibit a lowered interspecific allometry coefficient, are used here to consider previous explanations. These are found to be inadequate in a number of ways, and an alternative explanation is proposed. This explanation is based on patterns of brain and body size change during ontogeny and phytogeny. It is argued that the interspecific allometry coefficient in African apes parallels the intraspecific one because similar ontogenetic modifications of body growth separate large and small forms along each curve. In both cases, body size differences are produced primarily by growth in later postnatal periods, during which little brain growth occurs. Data on body growth, neonatal scaling, and various lifehistory traits support this explanation. This work extends previous warnings that sizecorrected estimates of relative brain size may not correspond very closely to our understanding of the behavioral capacities of certain species in lineages characterized by rapid change in body size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. (1979). Size and shape in ontogeny and phylogeny.Paleobiology 5: 296–317.

    Google Scholar 

  • Bauchot, R. (1978). Encephalization in vertebrates.Brain Behav. Evol. 15: 1–18.

    PubMed  CAS  Google Scholar 

  • Bauchot, R., and Stephan, H. (1969). Encéphalisation et niveau évolutif chez les simiens.Mammalia 33: 225–275.

    Article  Google Scholar 

  • Bonner, J. T. B. (1968). Size change in development and evolution.J. Paleontol. 42: 1–15.

    Google Scholar 

  • Clutton-Brock, T. H., and Harvey, P. H. (1980). Primates, brains and ecology.J. Zool. (Lond.) 190: 309–323.

    Article  Google Scholar 

  • Clutton-Brock, T. H., Harvey, P. H., and Rudder, B. (1977). Sexual dimorphism, socionomic sex ratio and body weight in primates.Nature 269: 797–799.

    Article  PubMed  CAS  Google Scholar 

  • Cock, A. G. (1966). Genetical aspects of metrical growth and form in animals.Q. Rev. Biol. 41: 131–190.

    Article  PubMed  CAS  Google Scholar 

  • Count, E. W. (1947). Brain and body weight in man: Their antecedents in growth and evolution.Ann. N.Y. Acad. Sci. 46: 993–1122.

    Article  Google Scholar 

  • DeBeer, G. R. (1958).Embryos and Ancestors, Clarendon Press, Oxford.

    Google Scholar 

  • DuBrul, E. L. (1977). Early hominid feeding mechanisms.Am. J. Phys. Anthropol. 47: 305–320.

    Article  CAS  Google Scholar 

  • Eisenberg, J. F., and Wilson, D. E. (1978). Relative brain size and feeding strategies in the Chiroptera.Evolution 32: 740–751.

    Article  Google Scholar 

  • Eisenberg, J. F., and Wilson, D. E. (1981). Relative brain size and demographic strategies in didelphid marsupials.Am. Nat. 118: 1–15.

    Article  Google Scholar 

  • Epstein, H. T. (1979). Correlated brain and intelligence development in humans. In Hahn, M.E., Jensen, C, and Dudek, B.C. (eds.),Development and Evolution of Brain Size, Academic Press, New York.

    Google Scholar 

  • Fleagle, J. G., Kay, R. F., and Simons, E. L. (1980). Sexual dimorphism in early anthropoids.Nature 287: 328–331.

    Article  PubMed  CAS  Google Scholar 

  • Ford, S. M. (1980). Callitrichids as phyletic dwarfs, and the place of the Callitrichidae in Platyrrhini.Primates 21: 31–43.

    Article  Google Scholar 

  • Frazzetta, T. H. (1975).Complex Adaptations in Evolving Populations, Sinauer, Sunderland, Mass.

    Google Scholar 

  • Giles, E. (1956). Cranial allometry in the great apes.Hum. Biol. 28: 43–58.

    PubMed  CAS  Google Scholar 

  • Glander, K. E. (1977). Poison in a monkey’s Garden of Eden.Nat. Hist. 86(3): 34–41.

    Google Scholar 

  • Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny.Biol. Rev. 41: 587–640.

    PubMed  CAS  Google Scholar 

  • Gould, S. J. (1971). Geometric scaling in allometric growth: A contribution to the problem of scaling in the evolution of size.Am. Nat. 105: 113–136.

    Article  Google Scholar 

  • Gould, S. J. (1975a). Allometry in Primates, with emphasis on scaling and the evolution of the brain. In Szalay, F.S. (ed.),Contributions to Primatology, Vol. 5, S. Karger, Basel, New York, pp. 244–292.

    Google Scholar 

  • Gould, S. J. (1975b). On the scaling of tooth size in mammals.Am. Zool. 15: 351–362.

    Google Scholar 

  • Gould, S. J. (1977).Ontogeny and Phylogeny, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Gould, S. J., and Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme.Proc. R. Soc. Lond. B. 205: 581–598.

    PubMed  CAS  Google Scholar 

  • Grether, W. F., and Yerkes, R. M. (1940). Weight norms and relations for chimpanzees.Am. J. Phys. Anthropol. 27(2): 181–197.

    Article  Google Scholar 

  • Groves, C. P. (1970).Gorillas, Barker, London.

    Google Scholar 

  • Hamai, I. (1938). Systematic relative growth inCypraea-Erronea-Pustularia-Talparia group.Sci. Rep. Tohaku Univ. Biol. 13: 15–24.

    Google Scholar 

  • Hersh, A. H. (1934). Evolutionary relative growth in the titanotheres.Am. Nat. 168: 537–561.

    Article  Google Scholar 

  • Holloway, R. L. (1966). Cranial capacity, neural reorganization, and hominid evolution: A search for more suitable parameters.Am. Anthropol. 68: 103–121.

    Article  Google Scholar 

  • Holloway, R. L. (1972). Australopithecine endocasts, brain evolution in the Hominoidea, and a model of hominoid evolution. In Tuttle, R.H. (ed.),The Functional and Evolutionary Biology of Primates, Aldine-Atherton, Chicago, pp. 185–203.

    Google Scholar 

  • Holloway, R. L. (1980). The relativity of relative brain size.Am. J. Phys. Anthropol. 52: 238.

    Google Scholar 

  • Hursh, T. M. (1976). Multivariate analysis of allometry in crania.Yearbk. Phys. Anthropol. 18: 111–120.

    Google Scholar 

  • Huxley, J. S. (1932).Problems of Relative Growth, Methuen, London.

    Google Scholar 

  • Jerison, H. J. (1973).Evolution of the Brain and Intelligence, Academic Press, New York.

    Google Scholar 

  • Jerison, H. J. (1979). The evolution of diversity in brain size. In Hahn, M. E., Jensen, C, and Dudek, B. C. (eds.),Development and Evolution of Brain Size, Academic Press, New York.

    Google Scholar 

  • Kavanagh, A. J., and Richards, O. W. (1942). Mathematical analysis of the relative growth of organisms.Proc. Rochester Acad. Sci. 8: 150–174.

    Google Scholar 

  • Kay, R. F. (1973).Mastication, Molar Tooth Structure and Diet in Primates, Ph.D. thesis, Yale University, New Haven, Conn.

  • Kay, R. F. (1975a). Allometry and early hominids.Science 189: 63.

    Google Scholar 

  • Kay, R. F. (1976b). The functional adaptations of primate molar teeth.Am. J. Phys. Anthropol. 43: 195–216.

    Article  Google Scholar 

  • Kay, R. F., and Simons, E. L. (1980). The ecology of Oligocene African Anthropoidea.Int. J. Primatol. 1: 21–38.

    Article  Google Scholar 

  • Kerr, G. R., Kennan, A. L., Waisman, H. A., and Allen, J. R. (1969). Growth and development of the fetal rhesus monkey. I. Physical growth.Growth 33: 201–213.

    PubMed  CAS  Google Scholar 

  • Kortlandt, A. (1962). Chimpanzees in the wild.Sci. Am. 206(5): 128–140.

    Article  PubMed  CAS  Google Scholar 

  • Kortlandt, A. (1972).New Perspectives on Ape and Human Evolution, Stichting vor Psychobiologie, Amsterdam.

    Google Scholar 

  • Kuhry, B., and Marcus, L. F. (1977). Bivariate linear models in biometry.Syst. Zool. 26: 201–209.

    Article  Google Scholar 

  • Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry.Evolution 33: 402–416.

    Article  Google Scholar 

  • Lapique, L. (1907). Tableau générale des poids somatique et encéphalique dans les espéces animales.Bull. Soc. Anthropol. Paris 8: 248–262.

    Google Scholar 

  • Leutenegger, W. (1973). Maternal-fetal weight relationships in Primates.Folia Primatol. 20: 280–293.

    Article  PubMed  CAS  Google Scholar 

  • Leutenegger, W. (1976). Allometry of neonatal size in eutherian mammals.Nature 263: 229–230.

    Article  PubMed  CAS  Google Scholar 

  • Leutenegger, W. (1977). Neonatal-maternal weight relationship in macaques: An example of intrageneric scaling.Folia Primatol. 27: 152–159.

    PubMed  CAS  Google Scholar 

  • Leutenegger, W. (1978). Scaling of sexual dimorphism in body size and breeding system in primates.Nature 272: 610–611.

    Article  PubMed  CAS  Google Scholar 

  • Leutenegger, W. (1979). Evolution of litter size in primates.Am. Nat. 114: 525–531.

    Article  Google Scholar 

  • Leutenegger, W. (1980). Monogamy in callitrichids: A consequence of phyletic dwarfism?Int. J. Primatol. 1: 95–98.

    Article  Google Scholar 

  • Leutenegger, W., and Cheverud, J. (1981). Determinants of sexual dimorphism among primates.Am. J. Phys. Anthropol. 54: 245 (abstr.).

    Google Scholar 

  • Lewontin, R. C. (1978). Adaptation. Sci.Am. 239: 212–230.

    PubMed  CAS  Google Scholar 

  • Lumer, H. (1939). Relative growth of the limb bones in the anthropoid apes.Hum Biol. 11: 371–392.

    Google Scholar 

  • MacArthur, J. W., and Chiasson, L. P. (1945). Relative growth in races of mice produced by selection.Growth 9: 303–315.

    Google Scholar 

  • Maier, W. (1978). Die bilophodonten Molaren der Indriidae (Primates) —ein evolutionmorphologischer Modellfall.Z. Morphol. Anthropol. 68: 307–344.

    Google Scholar 

  • Marshall, L. G., and Corruccini, R. S. (1978). Variability, evolutionary rates, and allometry in dwarfing lineages.Paleobiology 4: 101–119.

    Google Scholar 

  • Merrill, M. (1931). The relationship of individual growth to average growth.Hum. Biol. 3: 37–70.

    Google Scholar 

  • Napier, J. R., and Napier, P. H. (1967).A Handbook of Living Primates, Academic Press, New York.

    Google Scholar 

  • Passingham, R. E. (1975). The brain and intelligence.Brain Behav. Evol. 11: 1–15.

    PubMed  CAS  Google Scholar 

  • Patterson, F. G. (1978). The gestures of a gorilla: Language acquisition in another pongid.Brain Lang. 5: 72–97.

    Article  PubMed  CAS  Google Scholar 

  • Peters, S. M. F. (1978). Dwarfism and Callitrichidae.Am. J. Phys. Anthropol. 48: 426.

    Google Scholar 

  • Pilbeam, D., and Gould, S. J. (1974). Size and scaling in human evolution.Science 186: 892–901.

    Article  PubMed  CAS  Google Scholar 

  • Pilbeam, D., and Gould, S. J. (1975). Allometry and early hominids.Science 189: 64.

    Google Scholar 

  • Radinsky, L. (1973).Aegyptopithecus endocasts: Oldest record of a pongid brain.Am. J. Phys. Anthropol. 39: 239–248.

    Article  PubMed  CAS  Google Scholar 

  • Radinsky, L. (1975). Primate brain evolution.Am. Sci. 63: 656–663.

    PubMed  CAS  Google Scholar 

  • Radinsky, L. (1977). Early primate brains: Facts and fiction.J. Hum. Evol. 6: 79–86.

    Article  Google Scholar 

  • Rails, K. (1976). Mammals in which females are larger than males.Q. Rev. Biol. 51: 245–276.

    Article  Google Scholar 

  • Rails, K. (1977). Sexual dimorphism in mammals: Avian models and unanswered questions.Am. Nat. 111: 918–938.

    Google Scholar 

  • Reeve, E. C. R., and Murray, P. D. F. (1942). Evolution in the horse’s skull.Nature 150: 402–403.

    Google Scholar 

  • Rensch, B. (1959).Evolution Above the Species Level, Methuen, London.

    Google Scholar 

  • Robb, R. C. (1935). A study of mutations in evolution. II. Ontogeny in the equine skull.J. Genet. 31: 47–51.

    Google Scholar 

  • Rosenberger, A. L. (1977).Xenothrix and ceboid phylogeny.J. Hum. Evol. 6: 461–481.

    Article  Google Scholar 

  • Rowell, T. (1977). Variation in age at puberty in monkeys.Folia Primatol. 27: 245–316.

    Google Scholar 

  • Rumbaugh, D. M. (1970). Learning skills of anthropoids. In Rosenblum, L.A. (ed.),Primate Behavior: Developments in Field and Laboratory Research, Vol. 1, Academic Press, New York.

    Google Scholar 

  • Sacher, G. A., and Staffeldt, E. F. (1974). Relation of gestation time to brain weight for placental mammals: Implications for the theory of vertebrate growth.Am. Nat. 108: 593–615.

    Article  Google Scholar 

  • Schaller, G. (1964).The Year of the Gorilla, University of Chicago Press, Chicago.

    Google Scholar 

  • Scholl, D. (1948). The quantitative investigation of the vertebrate brain and the applicability of allometric formulae to its study.Proc. R. Soc. Lond. 135: 243–258.

    Google Scholar 

  • Schultz, A. H. (1955). The position of the occipital condyles and of the face relative to the skull base in primates.Am. J. Phys. Anthropol. 13: 97–120.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, A. H. (1956). Postembryonic age changes.Primatologia 1: 887–964.

    Google Scholar 

  • Schultz, A. H. (1969).The Life of Primates, Universe Books, New York.

    Google Scholar 

  • Shea, B. T. (1981). Relative growth of the craniofacial complex in the African apes.Am. J. Phys. Anthropol. 54: 276.

    Google Scholar 

  • Shea, B. T. (1982).Growth and Size Allometry in the African Pongidae: Cranial and Postcranial Analyses, Ph.D. thesis, Duke University, Durham, N.C.

    Google Scholar 

  • Smith, R. J. (1980). Rethinking allometry.J. Theoret. Biol. 87: 97–111.

    Article  CAS  Google Scholar 

  • Simons, E. L. (1972).Primate Evolution, Macmillan, New York.

    Google Scholar 

  • Sinnot, E. (1936). A developmental analysis of inherited shape differences in cucurbit fruits.Am. Nat. 70: 245–254.

    Article  Google Scholar 

  • Stephan, H. (1972). Evolution of primate brains: A comparative anatomical investigation. In Tuttle, R. H. (ed.),The Functional and Evolutionary Biology of Primates, Aldine-Atherton, Chicago, pp. 155–174.

    Google Scholar 

  • Stephan, H., and Andy, O. J. (1964). Quantitative comparisons of brain structures from insectivores to primates.Am. Zool. 4: 59–74.

    PubMed  CAS  Google Scholar 

  • Susman, R. L., and Creel, N. (1979). Functional and morphological affinities of the subadult hand (O.H. 7) from Olduvai Gorge.Am. J. Phys. Anthropol. 51: 311–332.

    Article  PubMed  CAS  Google Scholar 

  • Szarski, H. (1980). A functional and evolutionary interpretation of brain size in verte-brates. In Hecht, W. C., Steere, B., and Wallace, B. (eds.),Evolutionary Biology, Plenum Press, New York.

    Google Scholar 

  • Tanner, J. M. (1951). Some notes on the reporting of growth data.Hum. Biol. 23:93–159.

    PubMed  CAS  Google Scholar 

  • Tobias, P. V. (1970). Brain size, grey matter and race —fact or fiction?Am. J. Phys. Anthropol. 32: 3–26.

    Article  PubMed  CAS  Google Scholar 

  • von Bertalanffy, L., and Pirozynski, W. J. (1952). Ontogenetic and evolutionary allometry.Evolution 6: 387–392.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shea, B.T. Phyletic size change and brain/body allometry: A consideration based on the African pongids and other primates. Int J Primatol 4, 33–62 (1983). https://doi.org/10.1007/BF02739359

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02739359

Key words

Navigation