Skip to main content
Log in

Simulation of propagation along an isolated skeletal muscle fiber in an isotropic volume conductor

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper describes a model of the frog skeletal muscle fiber that includes the effects of the transverse tubular system (T system) on propagation. Uniform propagation on an isolated fiber suspended in Ringer’s solution or in air is simulated by placing the cylindrical fiber model in a concentric three-dimensional isotropic volume conductor. The current through the T system outlets at the sarcolemmal surface is comparable in magnitude to the sarcolemmal current density, but is of opposite polarity. When it is added to the sarcolemmal current, the resulting triphasic waveform has a 100% increase in the leading positive peak, a 50% reduction in the negative peak, and more than 60% reduction in the trailing positive peak. As a result the tubular output current causes a reduction in the conduction, velocity, a decrease in the maximum rate of rise of the action potential, and an important modification of the extracellular potential. Compared to an isolated fiber in a large volume of Ringer’s solution, uniform propagation within a 2-μm-thick volume conductor annulus is slowed down from 1.92 to 0.72 m/s, and the extracellular potential is increased from 1 to 108 mV peak to peak, in agreement with published experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M. and I. A. Stegun.Handbook of Mathematical Functions. New York: Dover, 1970, 1046 pp.

    Google Scholar 

  2. Adrian, R. H., W. K. Chandler, and A. L. Hodgkin. Voltage clamp experiments in striated muscle fibers.J. Physiol. (Lond.) 208:607–644, 1970.

    CAS  Google Scholar 

  3. Adrian, R. H., W. K. Chandler, and A. L. Hodgkin. The kinetics of mechanical activation in frog muscle.J. Physiol. (Lond.) 204:207–230, 1969.

    CAS  Google Scholar 

  4. Adrian, R. H. and L. D. Peachey. Reconstruction of the action potential of frog Sartorius muscle.J. Physiol. (Lond.) 235:103–131, 1973.

    CAS  Google Scholar 

  5. Andreassen, S. and A. Rosenfalck. Relationship between intracellular and extracellular action potentials of skeletal muscle fiber.CRC Crit. Rev. Bioeng. 6:267–306, 1981.

    CAS  Google Scholar 

  6. Buchthal, F., C. Guld, and P. Rosenfalck. Volume conduction of the spike of the motor unit potential investigated with a new type of multielectrode.Acta Physiol. Scand. 38:331–354, 1957.

    Article  PubMed  CAS  Google Scholar 

  7. Buchthal, F. and O. Steen-Knudsen. Impulse propagation in striated muscle fibers and the role of the internal currents in activation.Ann. N.Y. Acad. Sci. 81:422–445, 1959.

    Article  PubMed  CAS  Google Scholar 

  8. Campbell, D. T. and B. Hille. Kinetic and pharmacological properties of the sodium channel of the frog skeletal muscle.J. Gen. Physiol. 67:309–323, 1976.

    Article  PubMed  CAS  Google Scholar 

  9. Fatt, P. An analysis of the transverse electrical, impedance of striated muscle.Proc. R. Soc. Lond. B. 159:606–651, 1964.

    PubMed  CAS  Google Scholar 

  10. Fletcher, C. A. J.Computational Techniques for Fluid Dynamics (second edition), Vol. 1. Berlin: Springer Verlag, 1991, 401 pp.

    Google Scholar 

  11. Gage, P. W. and R. S. Eisenberg. Action potentials, after potentials, and excitation-contraction coupling in frog Sartorius fibers without transverse tubules.J. Gen. Physiol. 53: 298–310, 1969.

    Article  PubMed  CAS  Google Scholar 

  12. Ganapathy, N. and J. W. Clark. Extracellular potentials from skeletal muscle.Math. Biosc. 83:61–96, 1987.

    Article  Google Scholar 

  13. Henneberg, K. and F. A. Roberge. Simulation of propagation in a bundle of skeletal muscle: modulation effects of passive fibers.Ann. Biomed. Eng. 1997.

  14. Hille, B.Ionic Channels of Excitable Membranes. Sunderland, MA: Sinauer Associates, 1992, 607 pp.

    Google Scholar 

  15. Hodgkin, A. L. and S. Nakajima. The effect of diameter on the electrical constants of frog skeletal muscle fibers.J. Physiol. (Lond.) 221:105–120, 1972.

    CAS  Google Scholar 

  16. Hodgkin, A. L. and S. Nakajima. Analysis of the membrane capacity in frog muscle.J. Physiol. (Lond.) 221:121–136, 1972.

    CAS  Google Scholar 

  17. Huang, C. L.-H. and L. D. Peachey. A reconstruction of charge movement during the action potential in frog skeletal muscle.Biophys. J. 61:1133–1146, 1992.

    PubMed  CAS  Google Scholar 

  18. Håkansson, C. H. Conduction velocity and amplitude of the action potential as related to circumference in the isolated fibre of frog muscle.Acta Physiol. Scand. 37:14–34, 1956.

    PubMed  Google Scholar 

  19. Håkansson, C. H. Action potentials recorded intra- and extracellularly from the isolated frog muscle fibre in Ringer’s solution and in air.Acta Physiol. Scand. 41:190–216, 1957.

    Google Scholar 

  20. Ildefonse, M. and G. Roy. Kinetic properties of the sodium current in striated muscle fibres on the basis of the Hodgkin-Huxley theory.J. Physiol. (Lond.) 227:419–431, 1972.

    CAS  Google Scholar 

  21. Lathi, B.Signals, Systems, and Controls. New York: Harper and Row, 1974, 524 pp.

    Google Scholar 

  22. Mathias, R. T., R. S. Eisenberg, and R. Valdiosera. Electrical properties of frog skeletal muscle fibers interpreted with a mesh model of the tubular system.Biophys. J. 17:57–93, 1977.

    PubMed  CAS  Google Scholar 

  23. Mobley, B. A. and B. Eisenberg. Sizes of components in frog skeletal muscle measured by methods of stereology.J. Gen. Physiol. 66:31–45, 1975.

    Article  PubMed  CAS  Google Scholar 

  24. Nakajima, S. and A. Gilai. Radial propagation of muscle action potential along the tubular system examined by potential-sensitive dyes.J. Gen. Physiol. 76:751–762, 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Peachey, L. D. and R. H. Adrian. Electrical properties of the transverse tubular system. In:Structure and Function of Muscle, Vol. 3, edited by G. Bourne. New York: Academic Press, 1973, pp. 1–29.

    Google Scholar 

  26. Peachey, L. D. and C. Franzini-Armstrong. Structure and function of membrane systems of skeletal muscle cells. In:Handbook of Physiology, Vol. 10:Skeletal Muscle, edited by L. D. Peachey. Bethesda, MD: American Physiol Society, 1983, pp. 23–71.

    Google Scholar 

  27. Plonsey, R. Effect of intracellular anisotropy on the electrical source determination in a muscle fibre.Med. Biol. Eng. Comput. 28:312–316, 1990.

    Article  PubMed  CAS  Google Scholar 

  28. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.Numerical Recipes: The Art of Scientific Computing. Cambridge: Cambridge University Press, 1987, 818 pp.

    Google Scholar 

  29. Rosenfalck, P. Intra- and extracellular potential fields of active nerve and muscle fibres.Acta Physiol. Scand. Suppl. 321:1–168, 1969.

    CAS  Google Scholar 

  30. Schneider, M. F. Linear electrical properties of the transverse tubules and surface membrane of skeletal muscle fibers.J. Gen. Physiol. 56:640–671, 1970.

    Article  PubMed  CAS  Google Scholar 

  31. Stockbridge, N. Solution of the Hodgkin-Huxley and cable equations on an array processor.Ann. Biomed. Eng. 17:253–268, 1989.

    Article  PubMed  CAS  Google Scholar 

  32. Valdiosera, R., C. Clausen, and R. S. Eisenberg. Impedance of frog skeletal muscle fibers in various solutions.J. Gen. Physiol. 63:460–491, 1974.

    Article  PubMed  CAS  Google Scholar 

  33. van Veen, B. K., H. Wolters, W. Wallinga, W. L. C. Rutten, and H. B. K. Boom. The bioelectric source in computing single muscle fiber action potentials.Biophys. J. 64:1492–1498, 1993.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henneberg, KÅ., Roberge, F.A. Simulation of propagation along an isolated skeletal muscle fiber in an isotropic volume conductor. Ann Biomed Eng 25, 15–28 (1997). https://doi.org/10.1007/BF02738535

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738535

Keywords

Navigation