Skip to main content
Log in

Expression and regulation of mRNA for distinct isoforms of cAMP-specific PDE-4 in mitogen-stimulated and leukemic human lymphocytes

  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We reported previously that the gene for PDE-1B1 is induced in isolated human peripheral blood lymphocytes (HPBL) following mitogenic stimulation (Jiang, X., Li, J., Paskind, M., and Epstein, P. M. [1996]Proc. Natl. Acad. Sci. USA 93, 11,236–11,241). Using reverse transcription-polymerase chain reaction (RT-PCR), we investigated possible changes in the expression of the four genes for cAMP-specific phosphodiesterase (PDE-4A-D) in HPBL under the same conditions. Isolated, quiescent HPBL express mRNA for PDE-4B as the principal transcript. Following mitogenic stimulation with phytohemagglutinin (PHA), mRNA for PDE-4A and PDE-4D are clearly induced. HPBL appear not to express PDE-4C under resting or stimulated conditions. The PHA induced increase in PDE-1B1, PDE-4A, and PDE-4D mRNA is mimicked by incubation of HPBL with dibutyryl cAMP (dBcAMP) and 1-methyl-3-isobutylxanthine (IBMX). The B-lymphoblastoid cell line, RPMI 8392, and the T-leukemic cell line, Molt 4, express PDE-4A mRNA as the most abundant transcript, but incubation with dBcAMP and IBMX induces an increase in the expression of mRNA for PDE-4B in both of these cell lines, and in PDE-4D3 in the RPMI 8392 cell line. These studies demonstrate that expression of mRNA for PDE-1B1 and some of the subtypes of PDE-4 are induced in HPBL following mitogenic stimulation, possibly secondarily to elevation of cAMP induced by the mitogen. As already indicated for PDE-1B1, some of these subtypes of PDE-4 might also provide additional therapeutic targets for treatment of immunoproliferative disorders and immune dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PDE:

cyclic nucleotide phosphodiesterase

HPBL:

human peripheral blood lymphocytes

HPBM:

human peripheral blood monocytes

RT-PCR:

reverse transcription-polymerase chain reaction

CaM:

calmodulin

PHA:

phytohemagglutinin

Con A:

concanavalin A

PMA:

phorbol myristic acid

PKA:

cAMP-dependent protein kinase

PKC:

protein kinase C

CRE:

cAMP-response element

CREB:

cAMP-response element binding proteins

dBcAMP:

dibutyryl cAMP

8-Br-cAMP:

8-bromo-cAMP

IBMX:

1-methyl-3-isobutylxanthine

FSH:

follicle-stimulating hormone

TSH:

thyroid-stimulating hormone

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

nt:

nucleotide(s)

bp:

base pair(s)

References

  1. Bourne, H. R., Lichtenstein, L. M., Melmon, K. L., Henney, C. S., Weinstein, Y., and Shearer, G. M. (1974) Modulation of inflammation and immunity by cyclic AMP.Science 184, 19–28.

    Article  PubMed  CAS  Google Scholar 

  2. Kammer, G. M. (1988) The adenylate cyclase—cAMP—protein kinase A pathway and regulation of the immune response.Immunol. Today 9, 222–229.

    Article  PubMed  CAS  Google Scholar 

  3. Imboden, J. B., Sloback, D. M., Patterson, G., and Stoba, S. D. (1986) Cholera toxin inhibits T cell antigen receptor-mediated increases in inositol trisphosphate and cytoplasmic free calcium.Proc. Natl. Acad. Sci. USA 83, 5673–5677.

    Article  PubMed  CAS  Google Scholar 

  4. Lerner, A., Jacobson, B., and Mitler, R. A. (1988) Cyclic AMP concentrations modulate both calcium flux and hydrolysis of phosphatidylinositol phosphates in mouse T lymphocytes.J. Immunol. 140, 936–940.

    PubMed  CAS  Google Scholar 

  5. Alava, M. A., DeBell, K. E., Conti, A., Hoffman, T., and Bonvini, E. (1992) Increased intracellular cyclic AMP inhibits inositol phospholipid hydrolysis induced by perturbation of the T cell receptor/CD3 complex but not by G-protein stimulation.Biochem. J. 284, 189–199.

    PubMed  CAS  Google Scholar 

  6. Mary, D., Aussel, C., Ferrua, B., and Fehlmann, M. (1987) Regulation of interleukin 2 synthesis by cAMP in human T cells.J. Immunol. 139, 1179–1184.

    PubMed  CAS  Google Scholar 

  7. Minakuchi, R., Wacholtz, M. C., Davis, L. R., and Lipsky, P. E. (1990) Delineation of the mechanism of inhibition of human T cell activation by PGE2.J. Immunol. 145, 2616–2631.

    PubMed  CAS  Google Scholar 

  8. Anastassiou, E. D., Paliogianni, F., Balow, J. P., Yamada, H., and Boumpas, D. T. (1992) Prostaglandin E2 and other cyclic AMP-elevating agents modulate IL-2 and IL-2Rα gene expression at multiple levels.J. Immunol. 148, 2845–2852.

    PubMed  CAS  Google Scholar 

  9. Lingk, D. S., Chan, M. A., and Gelfand, E. W. (1990) Increased cyclic adenosine monophosphate levels block progression but not initiation of human T cell proliferation.J. Immunol. 145, 449–455.

    PubMed  CAS  Google Scholar 

  10. Hsueh, Y.-P., and Lai, M.-Z. (1995) C-jun N-terminal kinase but not mitogen-activated protein kinase is sensitive to cAMP inhibition in T lymphocytes.J. Biol. Chem. 270, 18,094–18,098.

    CAS  Google Scholar 

  11. Tamir, A., Granot, Y., and Isakov, N. (1996) Inhibition of T lymphocyte activation by cAMP is associated with down-regulation of two parallel mitogen-activated protein kinase pathways, the extracellular signal-related kinase and c-jun N-terminal kinase.J. Immunol. 157, 1514–1522.

    PubMed  CAS  Google Scholar 

  12. Wang, T., Sheppard, J. R., and Foker, J. E. (1978) Rise and fall of cyclic AMP required for onset of lymphocyte DNA synthesis.Science 201, 155–157.

    Article  PubMed  CAS  Google Scholar 

  13. Feuerstein, N., Firestein, R., Aiyar, N., He, X., Murasko, D., and Cristofalo, V. (1996) Late induction of CREB/ATF binding and a concomitant increase in cAMP levels in T and B lymphocytes stimulated via the antigen receptor.J. Immunol. 156, 4582–4593.

    PubMed  CAS  Google Scholar 

  14. Rochette-Egly, C. and Kempf, J. (1981) Cyclic nucleotides and calcium in human lymphocytes induced to divide.J. Physiol. (Paris)77, 721–725.

    CAS  Google Scholar 

  15. Wollberg, P., Soderqvist, H., and Nelson, B. D. (1994) Mitogen activation of human peripheral T lymphocytes induces the formation of new cAMP response element-binding protein nuclear complexes.J. Biol. Chem. 269, 19,719–19,724.

    CAS  Google Scholar 

  16. Epstein, P. M., Mills, J. S., Ross, C. P., Strada, S. J., Hersh, E. M., and Thompson, W. J. (1977) Increased cyclic nucleotide phosphodiesterase activity associated with proliferation and cancer in human and murine lymphoid cells.Cancer Res. 37, 4016–4023.

    PubMed  CAS  Google Scholar 

  17. Takemoto, D. J., Kaplan, S. A., and Appleman, M. M. (1979) Cyclic guanosine 3′,5′-monophosphate and phosphodiesterase activity in mitogen-stimulated human lymphocytes.Biochem. Biophys. Res. Commun. 90, 491–497.

    Article  PubMed  CAS  Google Scholar 

  18. Epstein, P. M., Mills, J. S., Hersh, E. M., Strada, S. J., and Thompson, W. J. (1980) Activation of cyclic nucleotide phosphodiesterases from isolated human peripheral blood lymphocytes by mitogenic agents.Cancer Res. 40, 379–386.

    PubMed  CAS  Google Scholar 

  19. Epstein, P. M. and Hachisu, R. (1984) Cyclic nucleotide phosphodiesterase in normal and leukemic human lymphocytes and lymphoblasts.Adv. Cyclic Nucleotide Protein Phosphorylation Res. 16, 303–324.

    PubMed  CAS  Google Scholar 

  20. Robicsek, S. A., Blanchard, D. K., Djeu, J. Y., Krzanowski, J. J., Szentivanyi, A., and Polson, J. B. (1991) Multiple high-affinity cAMP-phosphodiesterases in human T-lymphocytes.Biochem. Pharmacol. 42, 869–877.

    Article  PubMed  CAS  Google Scholar 

  21. Marcoz, P., Prigent, A. F., Lagarde, M., and Nemoz G. (1993) Modulation of rat thymocyte proliferative response through the inhibition of different cyclic nucleotide phosphodiesterase isoforms by means of selective inhibitors and cGMP-elevating agents.Mol. Pharmacol. 44, 1027–1035.

    PubMed  CAS  Google Scholar 

  22. Tenor, H., Staniciu, L., Schudt, C., Hatzelmann, A., Wendel, A., Djukanovic, R., Church, M. K., and Shute, J. K. (1995) Cyclic nucleotide phosphodiesterases from purified human CD4+ and CD8+ T lymphocytes.Clin. Exp. Allergy 25, 616–624.

    Article  PubMed  CAS  Google Scholar 

  23. Giembycz, M. A., Corrigan, C. J., Seybold, J., Newton, R., and Barnes, P. J. (1996) Identification of cyclic AMP phosphodiesterases 3,4 and 7 in human CD4+ and CD8+ T-lymphocytes: role in regulating proliferation and the biosynthesis of interleukin-2.Br. J. Pharmacol. 118, 1945–1958.

    PubMed  CAS  Google Scholar 

  24. Banner, K. H., Bertin, B., Moodley, I., and Page, C. P. (1996) Effect of isoenzyme selective phosphodiesterase inhibitors on the proliferation of murine thymus and spleen cells.Pulm. Pharmacol. 9, 35–41.

    Article  PubMed  CAS  Google Scholar 

  25. Beavo, J. A., Conti, M., and Heaslip, R. J. (1994) Multiple cyclic nucleotide phosphodiesterases.Mol. Pharmacol. 46, 399–405.

    PubMed  CAS  Google Scholar 

  26. Thompson, W. J. (1991) Cyclic nucleotide phosphodiesterases: pharmacology, biochemistry and function.Pharmacol. Ther. 51, 13–33.

    Article  PubMed  CAS  Google Scholar 

  27. Bolger, G. B. (1994) Molecular biology of the cyclic AMP-specific cyclic nucleotide phosphodiesterases: a diverse family of regulatory enzymes.Cell. Signal. 6, 851–859.

    Article  PubMed  CAS  Google Scholar 

  28. Beavo, J. A. (1995) Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms.Physiol. Rev. 75, 725–748.

    PubMed  CAS  Google Scholar 

  29. Conti, M., Nemoz, G., Sette, C., and Vicini, E. (1995). Recent progress in understanding the hormonal regulation of phosphodiesterases.Endoc. Rev. 16, 370–389.

    Article  CAS  Google Scholar 

  30. Epstein, P. M., Moraski, S., Jr., and Hachisu, R. (1987) Identification and characterization of a Ca2+-calmodulin-sensitive cyclic nucleotide phosphodiesterase in a human lymphoblastoid cell line.Biochem. J. 243, 533–539.

    PubMed  CAS  Google Scholar 

  31. Jiang, X., Li, J., Paskind, M., and Epstein, P. M. (1996) Inhibition of calmodulin-dependent phosphodiesterase induces apoptosis in human leukemic cells.Proc. Natl. Acad. Sci. USA 93, 11,236–11,241.

    CAS  Google Scholar 

  32. Bourne, H. R., Tomkins, G. M., and Dion, S. (1973) Regulation of phosphodiesterase synthesis: requirement for cyclic adenosine monophosphate-dependent protein kinase.Science 181, 952–954.

    Article  PubMed  CAS  Google Scholar 

  33. Obernolte, R., Bhakta, S., Alvarez, R., Bach, C., Zuppan, P., Mulkins, M., Jarnagin, K., and Shelton, E. R. (1993) The cDNA of a human lymphocyte cyclic-AMP phosphodiesterase (PDE-IV) reveals a multigene family.Gene 129, 239–247.

    Article  PubMed  CAS  Google Scholar 

  34. Torphy, T. J., Zhou, H.-L., and Cieslinski, L. B. (1992) Stimulation of beta adrenoceptors in a human monocyte cell line (U937) upregulates cyclic AMP-specific phosphodiesterase activity.J. Pharmacol. Exp. Ther. 263, 1195–1205.

    PubMed  CAS  Google Scholar 

  35. Verghese, M. W., McConnell, R. T., Lenhard, J. M., Hamacher, L., and Jin, S.-L. C. (1995) Regulation of distinct cyclic AMP-specific phosphodiesterase (phosphodiesterase type 4) isozymes in human monocytic cells.Mol. Pharmacol. 47, 1164–1171.

    PubMed  CAS  Google Scholar 

  36. Thompson, W. J., Ross, C. P., Strada, S. J., Hersh, E. M., and Lavis, V. R. (1980) Comparative analyses of cyclic adenosine 3′:5′-monophosphate phosphodiesterases of human peripheral blood monocytes and cultured P388D1 cells.Cancer Res. 40, 1955–1960.

    PubMed  CAS  Google Scholar 

  37. Manganiello, V., and Vaughan, M. (1972) Prostaglandin E1 effects on adenosine 3′:5′-monophosphate concentration and phosphodiesterase activity in fibroblasts.Proc. Natl. Acad. Sci. USA 69, 269–273.

    Article  Google Scholar 

  38. D'Armiento, M., Johnson, G. S., and Pastan, I. (1972) Regulation of adenosine 3′:5′-cyclic monophosphate phosphodiesterase activity in fibroblasts by intracellular concentrations of cyclic adenosine monophosphate.Proc. Natl. Acad. Sci. USA 69, 450–462.

    Article  Google Scholar 

  39. Russell, T. E. and Pastan, I. H. (1974) Cyclic adenosine 3′:5′-monophosphate and cyclic guanosine 3′:5′-monophosphate phosphodiesterase activities are under separate genetic control.J. Biol. Chem. 249, 7764–7769.

    PubMed  CAS  Google Scholar 

  40. Uzunov, P., Shein, H. M., and Weiss, B. (1972) Cyclic AMP phosphodiesterase in cloned astrocytoma cells: norepinephrine induces a specific enzyme form.Science 180, 304–306.

    Article  Google Scholar 

  41. Browning, E. T., Brostrom, C. O., and Groppi, V. E., Jr. (1974) Altered adenosine cyclic 3′:5′-monophosphate synthesis and degradation by C-6 astrocytoma cells following prolonged exposure to norepinephrine.Mol. Pharmacol. 12, 32–40.

    Google Scholar 

  42. Schwartz, J. P. and Passonneau, J. V. (1974) Cyclic AMP-mediated induction of the cyclic AMP phosphodiesterase in C6 glioma cells.Proc. Natl. Acad. Sci. USA 71, 3844–3848.

    Article  PubMed  CAS  Google Scholar 

  43. Onali, P., Schwartz, J. P., Hanbauer, I., and Costa, E. (1981) Regulation by β-adrenergic receptor of a Ca2+-independent adenosine 3′,5′-(cyclic) monophosphate phosphodiesterase in C6 glioma cells.Biochim. Biophys. Acta 657, 285–292.

    Google Scholar 

  44. Ross, P. S., Manganiello, V. C., and Vaughan, M. (1977) Regulation of cyclic nucleotide phosphodiesterases in cultured hepatoma cells by dexamethasone and N6,O2-dibutyryl adenosine 3′:5′-monophosphate.J. Biol. Chem. 252, 1448–1452.

    PubMed  CAS  Google Scholar 

  45. Kovala, T., Lorimer, I. A. J., Brickenden, A. M., Ball, E. H., and Sanwal, B. D. (1994) Protein kinase A regulation of cAMP phosphodiesterase expression in rat skeletal myoblasts.J. Biol. Chem. 209, 8680–8685.

    Google Scholar 

  46. Minneman, K. P. and Iversen, L. L. (1976) Cholera toxin induces pineal enzymes in culture.Science 192, 803–805.

    Article  PubMed  CAS  Google Scholar 

  47. Oleshansky, M. A. and Neff, N. H. (1975) Rat pineal adenosine cyclic 3′,5′-monophosphate phosphodiesterase activity: modulation in vivo by a beta adrenergic receptor.Mol. Pharmacol. 11, 552–557.

    PubMed  CAS  Google Scholar 

  48. Conti, M., Toscano, M. V., Petrelli, L., Geremia, R., and Stefanini, M. (1982) Regulation by follicle-stimulating hormone and dibutyryl adenosine 3′,5′-monophosphate of a phosphodiesterase isoenzyme of the Sertoli cell.Endocrinology 110, 1189–1196.

    Article  PubMed  CAS  Google Scholar 

  49. Conti, M., Kasson, B. G., and Hsueh, A. J. W. (1984) Hormonal regulation of 3′,5′-adenosine monophosphate phosphodiesterases in cultured rat granulosa cells.Endocrinology 114, 2361–2368.

    PubMed  CAS  Google Scholar 

  50. Swinnen, J. V., Joseph, D. R., and Conti, M. (1989) The mRNA encoding a high-affinity cAMP phosphodiesterase is regulated by hormones and cAMP.Proc. Natl. Acad. Sci. USA 86, 8197–8201.

    Article  PubMed  CAS  Google Scholar 

  51. Swinnen, J. V., Tsikalas, K. E., and Conti, M. (1991) Properties and hormonal regulation of two structurally related cAMP phosphodiesterases from the rat Sertoli cell.J. Biol. Chem. 266, 18,370–18,377.

    CAS  Google Scholar 

  52. Conti, M., Iona, S., Cuomo, M., Swinnen, J. V., Odeh, J., and Svoboda, M. E. (1995) Characterization of a hormone-inducible, high affinity adenosine 3′-5′-cyclic monophosphate phosphodiesterase from the rat Sertoli cell.Biochemistry 34, 7979–7987.

    Article  PubMed  CAS  Google Scholar 

  53. Torphy, T. J., Zhou, H.-L., Foley, J. J., Sarau, H. M., Manning, C. D., and Barnette, M. S. (1995) Salbutamol up-regulates PDE-4 activity and induces a heterologous desensitization of U937 cells to prostaglandin E2.J. Biol. Chem. 270, 23,598–23,604.

    CAS  Google Scholar 

  54. Nemoz, G., Zhang, R. B., Sette, C., and Conti, M. (1996) Identification of cyclic AMP-phosphodiesterase variants from the PDE-4D gene expressed in human peripheral monouclear cells.FEBS Lett. 384, 97–102.

    Article  PubMed  CAS  Google Scholar 

  55. Engels, P., Fichtel, K., and Lubbert, H. (1994) Expression and regulation of human and rat phosphodiesterase type IV isogenes.FEBS Lett. 350, 291–295.

    Article  PubMed  CAS  Google Scholar 

  56. Nemoz, G., Sette, C., Hess, M., Muca, C., Vallar, L., and Conti, M. (1995) Activation of cyclic nucleotide phosphodiesterases in FRTL-5 thyroid cells expressing a constitutively active Gsα.Mol. Endocrinol. 9, 1279–1287.

    Article  PubMed  CAS  Google Scholar 

  57. Spence, S., Rena, G., Sweeney, G., and Houslay, M. D. (1995) Induction of Ca2+/calmodulin-stimulated cyclic AMP phosphodiesterase (PDE-1) activity in Chinese hamster ovary cells (CHO) by phorbol 12-myristate 13-acetate and by the selective overexpression of protein kinase C isoforms.Biochem. J. 310, 975–982.

    PubMed  CAS  Google Scholar 

  58. Spence, S., Rena, G., Sullivan, M., Erdogan, S., and Houslay, M. D. (1997) Receptor-mediated stimulation of lipid signalling pathways in CHO cells elicits the rapid transient induction of the PDE-1B isoform of Ca2+/calmodulin-stimulated cAMP phosphodiesterase.Biochem. J. 321, 157–163.

    PubMed  CAS  Google Scholar 

  59. Lalli, E., Lee, J. S., Lamas, M., Tamai, K., Zazopoulos, E., Nantel, F., Penna, L., Foulkes, N. S., and Sassone-Corsi, P. (1996) The nuclear response to cAMP: role of transcription factor CREM.Phil. Trans. R. Soc. Lond. B 351, 201–209.

    Article  CAS  Google Scholar 

  60. Sette, C., Iona, S., and Conti, M. (1994) The short-term activation of a rolipram-sensitive, cAMP-specific phosphodiesterase by thyroid-stimulating hormone in thyroid FRTL-5 cells is mediated by a cAMP-dependent phosphorylation.J. Biol. Chem. 25, 9245–9252.

    Google Scholar 

  61. Sette, C., Vicini, E., and Conti, M. (1994) The ratPDE-3/IVd phosphodiesterase gene codes for multiple proteins differentially activated by cAMP-dependent protein kinase.J. Biol. Chem. 269, 18,271–18,274.

    CAS  Google Scholar 

  62. Sette, C. and Conti, M. (1996) Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase.J. Biol. Chem. 271, 16,526–16,534.

    CAS  Google Scholar 

  63. Valette, L., Prigent, A. F., Nemoz, G., Anker, G., Macovschi, O., and Lagarde, M. (1990) Concanavalin A stimulates the rolipram-sensitive isoforms of cyclic nucleotide phosphodiesterase in rat thymic lymphocytes.Biochem. Biophys. Res. Commun. 169, 864–872.

    Article  PubMed  CAS  Google Scholar 

  64. Marcoz, P., Nemoz, G., Prigent, A.-F., and Lagarde, M. (1993) Phosphatidic acid stimulates the rolipram-sensitive cyclic nucleotide phosphodiesterase from rat thymocytes.Biochim. Biophys. Acta. 1176, 129–136.

    Article  PubMed  CAS  Google Scholar 

  65. Michie, A. M., Lobban, M., Muller, T., Harnett, M. M., and Houslay, M. D. (1996) Rapid regulation of PDE-2 and PDE-4 cyclic AMP phosphodiesterase activity following ligation of the T cell antigen receptor on thymocytes: analysis using the selective inhibitors erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA) and rolipram.Cell. Signal. 8, 97–110.

    Article  PubMed  CAS  Google Scholar 

  66. Meskini, N., Hosni, M., Nemoz, G., Lagarde M., and Prigent, A.-F. (1992) Early increase in lymphocyte cyclic nucleotide phosphodiesterase activity upon mitogenic activation of human peripheral blood mononuclear cells.J. Cell. Physol. 150, 140–148.

    Article  CAS  Google Scholar 

  67. Coffey, R. G. and Hadden, J. W. (1983) Phorbol myristate acetate stimulation of lymphocyte guanylate cyclase and cyclic guanosine 3′∶5′-monophosphate phosphodiesterase and reduction of adenylate cyclase.Cancer Res. 43, 150–158.

    PubMed  CAS  Google Scholar 

  68. Thompson, W. J., Ross, C. P., Pledger, W. J., Hersch, E. M., Banner, R. L., and Strada, S. J. (1976) Cyclic adenosine 3′∶5′-monophosphate phosphodiesterase: distinct forms in human lymphocytes and monocytes.J. Biol. Chem. 251, 4922–4929.

    PubMed  CAS  Google Scholar 

  69. Manning, C. D., McLaughlin, M. M., Livi, G. P., Cieslinski, L. B., Torphy, T. J., and Barnette, M. S. (1996) Prolonged beta adrenoceptor stimulation up-regulates cAMP phosphodiesterase activity in human monocytes by increasing mRNA and protein for phosphodiesterase 4A and 4B.J. Pharmacol. Exp. Ther. 276, 810–818.

    PubMed  CAS  Google Scholar 

  70. Erdogan, S. and Houslay, M. D. (1997) Challenge of human Jurkat T-cells with the adenylate cyclase activator forskolin elicits major changes in cAMP phosphodiesterase (PDE) expression by upregulating PDE-3 and inducing PDE-4D1 and PDE-4D2 splice variants as well as down-regulating a novel PDE-4A splice variant.Biochem. J. 321, 165–175.

    PubMed  CAS  Google Scholar 

  71. Thompson, W. J., Ross, C. P., Hersh, E. M., Epstein, P. M., and Strada, S. J. (1980) Activation of human lymphocyte high affinity cyclic AMP phosphodiesterase by culture with 1-methyl-3-isobutylxanthine.J. Cyclic Nucleotide Res. 6, 25–36.

    PubMed  CAS  Google Scholar 

  72. Raeburn, D., Souness, J. E., Tomkinson, A., and Karlsson, J.-A. (1993) Isozyme-selective cyclic nucleotide phosphodiesterase inhibitors: biochemistry, pharmacology and therapeutic potential in asthma.Prog. Drug. Res. 46, 9–32.

    Google Scholar 

  73. Semmler, J., Wachtel, H., and Endres, S. (1993) The specific type IV phosphodiesterase inhibitor rolipram suppresses tumor necrosis factor-α production by human mononuclear cells.Int. J. Immunopharmacol. 15, 409–413.

    Article  PubMed  CAS  Google Scholar 

  74. Kambayashi, T., Jacob, C. O., Zhou, D., Mazurek, N., Fong, M., and Strassmann, G. (1995) Cyclic nucleotide phosphodiesterase type IV participates in the regulation of IL-10 and in the subsequent inhibition of TNF-α and IL-6 release by endotoxin-stimulated macrophages.J. Immunol. 155, 4909–4916.

    PubMed  CAS  Google Scholar 

  75. Wauwe, J. V., Aerts, F., Walter, H., and de Boer, M. (1995) Cytokine production by phytohemagglutinin-stimulated human blood cells: effects of corticosteroids, T cell immunosuppressants and phosphodiesterase IV inhibitors.Inflamm. Res. 44, 400–405.

    Article  PubMed  Google Scholar 

  76. Verghese, M. W., McConnell, R. T., Strickland, A. B., Gooding, R. C., Stimpson, S. A., Yarnall, D. P., Taylor, J. D., and Furdon, P. J. (1995) Differential regulation of human monocyte-derived TNFα and IL-1β by type IV cAMP-phosphodiesterase (cAMP-PDE) inhibitors.J. Pharmacol. Exp. Ther. 272, 1313–1320.

    PubMed  CAS  Google Scholar 

  77. Sekut, L., Yarnall, D., Stimpson, S. A., Noel, L. S., Bateman-Fite, R., Clark, R. L., Brackeen, M. F., Menius, J. A., Jr., and Connolly, K. M. (1995) Anti-inflammatory activity of phosphodiesterase (PDE)-IV inhibitors in acute and chronic models of inflammation.Clin. Exp. Immunol. 100, 126–132.

    Article  PubMed  CAS  Google Scholar 

  78. Schudt, C., Tenor, H., and Hatzelmann, A. (1995) PDE isoenzymes as targets for anti-asthma drugs.Eur. Respir. J. 8, 1179–1183.

    Article  PubMed  CAS  Google Scholar 

  79. Foissier, L., Lonchampt, M., Coge, F., and Canet, E. (1996)In vitro down-regulation of antigen-induced IL-5 gene expression and protein production by cAMP-specific phosphodiesterase type 4 inhibitor.J. Pharmacol. Exp. Ther. 278, 1484–1490.

    PubMed  CAS  Google Scholar 

  80. Turner, C. R., Cohan V. L., Cheng, J. B., Showell, H. J., Pazoles, C. J., and Watson, J. W. (1996) Thein vivo pharmacology of CP-80, 633, a selective inhibitor of phosphodiesterase 4.J. Pharmacol. Exp. Ther. 278, 1349–1355.

    PubMed  CAS  Google Scholar 

  81. Cohan, V. L., Showell, H. J., Fisher, D. A., Pazoles, C. J., Watson, J. W., Turner, C. R., and Cheng, J. B. (1996)In vitro pharmacology of the novel phosphodiesterase type 4 inhibitor, CP-80633.J. Pharmacol. Exp. Ther. 278, 1356–1361.

    PubMed  CAS  Google Scholar 

  82. Giembycz, M. A. (1996) Phosphodiesterase 4 and tolerance to β2 agonists in asthma.Trends Pharmacol. Sci. 17, 0 331–336.

    Article  PubMed  CAS  Google Scholar 

  83. Gantner, F., Kusters, S., Wendel, A., Hatzelmann, A., Schudt, C., and Tiegs, G. (1997) Protection from T cell-mediated murine liver failure by phosphodiesterase inhibitors.J. Pharmacol. Exp. Ther. 280, 53–60.

    PubMed  CAS  Google Scholar 

  84. Gantner, F., Kupferschmidt R., Schudt, C., Wendel, A., and Hatzelmann, A. (1997)In vitro differentiation of human monocytes to macrophages: change of PDE profile and its relationship to suppression of tumour necrosis factor-α release by PDE inhibitors.Br. J. Pharmacol. 121, 221–231.

    Article  PubMed  CAS  Google Scholar 

  85. Siegmund, B., Eigler, A., Moeller, J., Greten, T. F., Hartmann, G., and Endres, S. (1997) Suppression of tumor necrosis factor-alpha production by interleukin-10 is enhanced by cAMP-elevating agents.Eur. J. Pharmacol. 321, 231–239.

    Article  PubMed  CAS  Google Scholar 

  86. Cheng, J. B., Watson, J. W., Pazoles, C. J., Eskra, J. D., Griffiths, R. J., Cohan, V. L., Turner, C. R., Showell, H. J., and Pettipher, E. R. (1997) The phosphodiesterase type 4 (PDE-4) inhibitor CP-80,633 elevates plasma cyclic AMP levels and decreases tumor necrosis factor-alpha (TNFα) production in mice: effect of adrenalectomy.J. Pharmacol. Exp. Ther. 280, 621–626.

    PubMed  CAS  Google Scholar 

  87. Dinter H., Onuffer, J., Faulds, D., and Perez, H. D. (1997) Phosphodiesterase type IV inhibitors in the treatment of multiple sclerosis.J. Mol. Med. 75, 95–102.

    Article  PubMed  CAS  Google Scholar 

  88. Angel, J. B., Saget, B. M., Walsh, S. P., Greten, T. F., Dinarello, C. A., Skolnik, P. R., and Endres, S. (1995) Rolipram, a specific type IV phosphodiesterase inhibitor, is a potent inhibitor of HIV-1 replication.AIDS 9, 1137–1144.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Epstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Paskind, M., Weltzien, R. et al. Expression and regulation of mRNA for distinct isoforms of cAMP-specific PDE-4 in mitogen-stimulated and leukemic human lymphocytes. Cell Biochem Biophys 28, 135–160 (1998). https://doi.org/10.1007/BF02737809

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02737809

Index Entries

Navigation