Skip to main content
Log in

Gangliosides and neutral glycolipids in ependymal, neuronal and primitive neuroectodermal tumors

  • Original Articles
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Neutral glycolipid and ganglioside compositions were determined on 11 ependymal tumors, 12 medulloblastomas, 6 other neuronal tumors of the brain, 4 peripheral neuroblastomas, 1 cerebral primitive neuroectodermal tumor (PNET), and 1 PNET of the thoracic wall. Within the group of tumors that can demonstrate neuronal phenotypes, there was an association between the degree of neuronal differentiation usually demonstrated by these tumors and the proportions of both GD1a and 1b-pathway gangliosides. The amount of globoside also correlated with the amount of 1b pathway gangliosides. Patients with medulloblastomas whose 1b gangliosides made up over 15% of the total gangliosides survived longer that those with lower proportions of 1b gangliosides. The only gangliosides in the choroid plexus papilloma were GM3 and GD1a, but other ependymal tumors had significant amounts of GD1b and its metabolic precursors. Ependymoma and anaplastic ependymoma had similar neutral glycolipid compositions, which were different from subependymoma, which lacked ceramide monohexoside and ceramide dihexoside. These differences in glycolipid compositions suggest that there may be fundamental biological differences between these types of ependymal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CDH:

ceramide dihexoside

CMH:

ceramide monohexoside

C:

chloroform

CTH:

ceramide trihexoside

GA1:

asialoGM1

HPTLC:

high-performance thin-layer chromatography

M:

methanol

NGL:

neutral glycolipids

PNET:

primitive neuroectodermal tumor

TLC:

thin-layer chromatography

W:

water

References

  • Ando S. and Yu R. K. (1977) Isolation and characterization of a novel trisialoganglioside GT1a from human brain.J. Biol. Chem. 252, 6247–6250.

    PubMed  CAS  Google Scholar 

  • Bailey P. and Cushing H. (1926)A Classification of Tumors of the Glioma Group on a Histogenetic Basis with a Correlated Study of Prognosis. Lippincott, Philadelphia.

    Google Scholar 

  • Burger P. C., Grahmann F. C., Bliestle A., and Kleihues P. (1987) Differentiation in the medulloblastoma. A histological and immunohistochemical study.Acta Neuropathol (Berl.) 73, 115–123.

    Article  CAS  Google Scholar 

  • Delattre O., Zugman J., Melot T., Garau X. S., Zucker J.-M., Lenoir G. M., et al. (1994) The Ewing family of tumors-A subgroup of small round-cell tumors defined by specific chimeric transcripts.N. Engl. J. Med. 331, 294–299.

    Article  PubMed  CAS  Google Scholar 

  • Derry D. M. and Wolfe L. S. (1967) Gangliosides in isolated neurons and glial cells.Science 158, 1452.

    Article  Google Scholar 

  • Fredman P., von Holst H., Collins V. P., Dellheden B., and Svennerholm L. (1993) Expression of gangliosides GD3 and 3′-isoLM1 in autopsy brains from patients with malignant tumors.J. Neurochem. 60, 99–105.

    Article  PubMed  CAS  Google Scholar 

  • Gillard B. K., Jones M. A., and Marcus D. M. (1987) Glycosphingolipids of human umbilical vein endothelial cells and smooth muscle cells.Arch. Biochem. Biophys. 256, 435–445.

    Article  PubMed  CAS  Google Scholar 

  • Gillard B. K., Heath J. P., Thurmon L. T., and Marcus D. M. (1991) Association of glycosphingolipids with intermediate filaments of human umbilical vein endothelial cells.Exp. Cell Res. 192, 433–444.

    Article  PubMed  CAS  Google Scholar 

  • Gottfries J., Fredman P., Mansson J.-E., Collins V. P., von Holst H., Armstrong D. D., et al. (1990) Determination of gangliosides in six human primary medulloblastomas.J. Neurochem. 55, 1322–1326.

    Article  PubMed  CAS  Google Scholar 

  • Gould V. E., Jansson D. S., Molenaar W. M., Rorke L. B., Trojanowski J. Q., Lee V. M. Y., et al. (1990) Primitive neuroectodermal tumors of the central nervous system. Patterns of expression of neuroendocrine markers, and all classes of intermediate filament proteins.Lab. Invest. 62, 498–509.

    PubMed  CAS  Google Scholar 

  • Guzman-Harty M., Warner J. K., Mancini M. E., Pearl D. K., and Yates A. J. (1988) Effect of crush lesion on radiolabelling of ganglioside in rat peripheral nerve.J. Neurochem. 50, 237–242.

    Article  PubMed  CAS  Google Scholar 

  • Harris G. and MacWilliam I. C. (1954) Dipping technique for revealing sugars on paper chromatograms.Chem. Ind. 249.

  • Hilbig R., Lauke G., and Rahmann H. (1983) Brain gangliosides during the life span (embryogenesis to senescence) of the rat.Dev. Neurosci. 6, 260–270.

    Article  PubMed  Google Scholar 

  • Hirschberg K., Zisling R., Van Echten-Deckert G., and Futerman A. H. (1996) Ganglioside synthesis during the development of neuronal polarity—Major changes occur during axonogenesis and axon elongation, but not during dendrite growth or synaptogenesis.J. Biol. Chem. 271, 14,876–14,882.

    CAS  Google Scholar 

  • Hughes M., Marsden H. B., and Palmer M. K. (1974) Histologic patterns of neuroblastoma.Cancer 34, 1706–1711.

    Article  PubMed  CAS  Google Scholar 

  • Jennemann R., Mennel H.-D., Bauer B. L., and Wiegandt H. (1994) Glycosphingolipid component profiles of human gliomas correlate with histological tumour types: Analysis of inter-individual and tumour-regional distribution.Acta Neurochir. (Wien.) 126, 170–178.

    Article  CAS  Google Scholar 

  • Joshi V. V., Cantor A. B., Altshuler G., Cohen L. J., Larkin E. W., Shuster J. J., et al. (1996) Conventional versus modified morphologic criteria for ganglioneuroblastoma.Arch. Pathol. Lab. Med. 120, 859–865.

    PubMed  CAS  Google Scholar 

  • Kanda T., Yoshino H., Ariga T., Yamawaki M., and Yu R. K. (1994) Glycosphingolipid antigens in cultured microvascular bovine brain endothelial cells: Sulfoglucuronosyl paragloboside as a target of monoclonal IgM in demyelinative neuropathy.J. Cell Biol. 126, 235–246.

    Article  PubMed  CAS  Google Scholar 

  • Kleihues P., Soylemezoglu F., Schäuble B., Scheithauer B. W., and Burger P. C. (1995) Histopathology, classification, and grading of gliomas.Glia 15, 211–221.

    Article  PubMed  CAS  Google Scholar 

  • Klenk E. (1942) Über die ganglioside, eine neue gruppe von zuckerhaltigen gehirnlipoiden.Hoppe-Seyler’s Z. Physiol. Chem. 273, 76–86.

    CAS  Google Scholar 

  • Ladisch S. and Wu Z.-L. (1985) Detection of a tumor-associated ganglioside in plasma of patients with neuroblastoma.Lancet 1985, 136–138.

    Article  Google Scholar 

  • Ladisch S., Wu Z.-L., Feig S., Schwartz E., Floutsis G., Wiley F., et al. (1987) Shedding of GD2 ganglioside by human neuroblastoma.Int. J. Cancer 39, 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Ladisch S., Sweeley C., Becker H., and Gage D. (1989) Aberrant fatty acyl α-hydroxylation in human neuroblastoma tumor gangliosides.J. Biol. Chem. 264, 12,097–12,105.

    CAS  Google Scholar 

  • Lowden J. A. and Wolfe L. S. (1964) Studies on brain gangliosides. III. Evidence for the location of gangliosides specifically in neurones.Can. J. Biochem. 42, 1587–1594.

    Article  PubMed  CAS  Google Scholar 

  • MacMillan V. H. and Wherrett J. R. (1969) A modified procedure for the analysis of mixtures of tissue gangliosides.J. Neurochem. 16, 1621–1624.

    Article  PubMed  CAS  Google Scholar 

  • Miettinen T., and Takki-Luukkainen I. T. (1959) Use of butyl acetate in determination of sialic acid.Acta Chem. Scand. 13, 856–885.

    Article  CAS  Google Scholar 

  • Neskovic N., Sarlieve L., Nussbaum J. L., Kostic D., and Mandel P. (1972) Quantitative thin-layer chromatography of glycolipids in animal tissues.Clin. Chim. Acta 38, 147–153.

    Article  PubMed  CAS  Google Scholar 

  • Rodden F. A., Wiegandt H., and Bauer B. L. (1991) Gangliosides: the relevance of current research to neurosurgery.J. Neurosurg. 74, 606–619.

    Article  PubMed  CAS  Google Scholar 

  • Saito T. and Hakomori S.-I. (1971) Quantitative isolation of total glycosphingolipids from animal cells.J. Lipid. Res. 12, 257–259.

    PubMed  CAS  Google Scholar 

  • Schengrund C.-L. and Shochat S. (1988) Gangliosides in neuroblastomas.Neurochem. Pathol. 8, 189–202.

    PubMed  CAS  Google Scholar 

  • Seyfried T. N., El-Abbadi M., Ecsedy J. A., Bai H. W., and Yohe H. C. (1996) Influence of host cell infiltration on the glycolipid content of mouse brain tumors.J. Neurochem. 66, 2026–2033.

    Article  PubMed  CAS  Google Scholar 

  • Shimada H. (1993) Tumors of the neuroblastoma group.State of the Art Rev. 2, 43–57.

    CAS  Google Scholar 

  • Singh L. P. K., Franklin T., Aguedlo J. D., Pearl D. K., and Yates A. J. (1991) Neutral glycolipid composition of human astrocytomas.Trans. Am. Soc. Neurochem. 22, 142.

    Google Scholar 

  • Singh L. P. K., Pearl D. K., Franklin T. K., Spring P. M., Scheithauer B. W., Coons S. W., et al. (1994) Neutral glycolipid composition of primary human brain tumors.Mol. Chem. Neuropathol. 21, 241–257.

    Article  PubMed  CAS  Google Scholar 

  • Smits A., van Grieken D., Hartman M., Lendahl U., Funa K., and Nister M. (1996) Co-expression of platelet-derived growth factor αand β receptors on medulloblastomas and other primitive neuroectodermal tumors is consistent with an immature stem cell and neuronal derivation.Lab. Invest. 74, 188–198.

    PubMed  CAS  Google Scholar 

  • Sung C. C., Pearl D. K., Coons S. W., Scheithauer B. W., Johnson P. C., and Yates A. J. (1994) Gangliosides as diagnostic markers of human astrocytomas and primitive neuroectodermal tumors.Cancer 74, 3010–3022.

    Article  PubMed  CAS  Google Scholar 

  • Sung C. C., Pearl D. K., Coons S. W., Scheithauer B. W., Johnson P. C., Zheng M., et al. (1995) Correlation of ganglioside patterns of primary brain tumors with survival.Cancer 75, 851–859.

    Article  PubMed  CAS  Google Scholar 

  • Svennerholm L. (1957) Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method.Biochim. Biophys. Acta 24, 604–611.

    Article  PubMed  CAS  Google Scholar 

  • Svennerholm L. (1980) Ganglioside designation.Adv. Exp. Med. Biol. 125, 11.

    PubMed  CAS  Google Scholar 

  • Svennerholm L., Bostrom K., Fredman P., Mansson J.-E., Rosengren B., and Rynmark B.-M. (1989) Human brain gangliosides: Developmental changes from early fetal stage to advanced age.Biochim. Biophys. Acta 1005, 109–117.

    PubMed  CAS  Google Scholar 

  • Tohyama T., Lee V. M.-Y., Rorke L. B., Marvin M., McKay R. D. G., and Trojanowski J. Q. (1993) Monoclonal antibodies to a rat nestin fusion protein recognize a 220-kDa polypeptide in subsets of fetal and adult human central nervous system neurons and in primitive neuroectodermal tumor cells.Am. J. Pathol. 143, 258–268.

    PubMed  CAS  Google Scholar 

  • Traylor T. D. and Hogan E. L. (1980) Gangliosides of human cerebral astrocytomas.J. Neurochem. 34, 126–131.

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski J. Q., Tohyama T., and Lee V. M.-Y. (1992) Medulloblastomas and related primitive neuroectodermal brain tumors of childhood recapitulate molecular milestones in the maturation of neuroblasts.Mol. Chem. Neuropathol. 17, 121–135.

    Article  PubMed  CAS  Google Scholar 

  • Ueno K., Ando S., and Yu R. K. (1978) Gangliosides of human, cat, and rabbit spinal cords and cord myelin.J. Lipid Res. 19, 863–871.

    PubMed  CAS  Google Scholar 

  • Vanier M. T., Holm M., Ohman R., and Svennerholm L. (1971) Developmental profiles of gangliosides in human and rat brain.J. Neurochem. 18, 581–592.

    Article  PubMed  CAS  Google Scholar 

  • Washiyama K., Muragaki Y., Rorke L. B., Lee V. M.-Y., Feinstein S. C., Radeke M. J., et al. (1996) Neurotrophin and neurotrophin receptor proteins in medulloblastomas and other primitive neuroectodermal tumors of the pediatric central nervous system.Am. J. Pathol. 148, 929–940.

    PubMed  CAS  Google Scholar 

  • Wiegandt H. (1982) The gangliosides, inAdvances in Neurochemistry, vol. 4, (Agranoff, B. W. and Aprison, M. H., eds.), Plenum, New York, pp. 149–223.

    Google Scholar 

  • Wu Z.-L., Schwartz E., Seeger R., and Ladisch S. (1986) Expression of GD2 ganglioside by untreated primary human neuroblastomas.Cancer Res. 46, 440–443.

    PubMed  CAS  Google Scholar 

  • Yates A. J. (1986) Gangliosides in the nervous system during development and regeneration.Neurochem. Pathol. 5, 309–329.

    Article  PubMed  CAS  Google Scholar 

  • Yates A. J. (1988) Glycolipids and gliomas.Neurochem. Pathol. 8, 157–180.

    PubMed  CAS  Google Scholar 

  • Yates A. J. and Thompson D. K. (1978) Ganglioside composition of peripheral nerve undergoing Wallerian degeneration.J. Neurochem. 30, 1649–1651.

    Article  PubMed  CAS  Google Scholar 

  • Yates A. J. and Wherrett J. R. (1974) Changes in the sciatic nerve of the rabbit and its tissue constituents during development.J. Neurochem. 23, 993–1003.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Ganglioside nomenclature is according to Svennerholm (Ledeen et al., 1988; Svennerholm, 1980).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yates, A.J., Franklin, T.K., McKinney, P. et al. Gangliosides and neutral glycolipids in ependymal, neuronal and primitive neuroectodermal tumors. J Mol Neurosci 12, 111–121 (1999). https://doi.org/10.1007/BF02736925

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736925

Index Entries

Navigation