Skip to main content
Log in

Expression of catecholamine-synthesizing enzymes, peptidylglycine α-amidating monooxygenase, and neuropeptide Y mRNA in the rat adrenal medulla after acute systemic nicotine

  • Original Articles
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The expression of catecholamine-synthesizing enzymes in the adrenal medulla is upregulated in parallel by stress and pharmacological treatments. In this study we examined whether a neuropeptide and its processing enzyme are regulated in parallel with catecholamine enzyme genes after drug treatment. Because the main effect of stress on the adrenal medulla is via splanchnic nerve stimulation of nicotinic receptors, we used nicotine to stimulate the medulla and visualized expression of catecholamine enzyme genes, the medullary peptide neuropeptide Y (NPY), and the neuropeptide-processing enzyme peptidylglycine α-amidating monooxygenase (PAM) byin situ hybridization quantified by image analysis of autoradiographic images. Rats received a single injection of nicotine (0, 1, or 5 mg/kg sc). Six hours later, rats were transcardially perfused. Free-floating adrenal gland sections were hybridized with35S-labeled cDNA probes for tyrosine hydroxylase (TH), dopamine β-hydroxylase (DBH), phenylethanolamineN-methyltransferase (PNMT), PAM, and NPY. Nicotine treatment upregulated the expression of TH, PNMT, and NPY genes in a dose-dependent fashion. Small but nonsignificant increases were observed in DBH and PAM mRNA levels. These results suggest that common transcriptional activation mechanisms may upregulate both catecholamine and neuropeptide synthesis in the adrenal medulla after nicotinic stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen J. M., Schon F., Yeats J. C., Kelly J. S., and Bloom S. R. (1986) Effect of reserpine, phenoxy-benzamine and cold stress on the neuropeptide Y content of the rat peripheral nervous system.Neuroscience 19, 1251–1254.

    Article  PubMed  CAS  Google Scholar 

  • Craviso G. L., Hemelt V. B., Waymire J. C., Larsen J., Mihaylova-Todora S. T., Westfall D. P., and Bjur R. A. (1993) Relationship between the nicotinic cholinergic mediated induction of tyrosine hydroxylase and release of catecholamines in bovine adrenal chromaffin cells.Proc. West. Pharmacol. Soc. 36, 1–5.

    PubMed  CAS  Google Scholar 

  • Craviso G. L., Hemelt V. B., and Waymire J. C. (1995) The transient nicotinic stimulation of tyrosine hydroxylase gene transcription in bovine adrenal chromaffin cells is independent of c-fos gene activation.Mol. Brain Res. 29, 233–244.

    Article  PubMed  CAS  Google Scholar 

  • Cubells J. F., Kim K. S., Baker H., Volpe B. T., Chung Y., Houpt T. A., Wessel T. C., and Joh T. H. (1995) Differential in vivo regulation of mRNA encoding the norepinephrine transporter and tyrosine hydroxylase in rat adrenal medulla and locus ceruleus.J. Neurochem. 65, 502–509.

    Article  PubMed  CAS  Google Scholar 

  • Eiden L. E., Giraud P., Dave J. R., Hotchkiss A. J., and Affolter H.-U. (1984) Nicotinic receptor stimulation activates enkephalin release and biosynthesis in adrenal chromaffin cells.Nature 312, 661–663.

    Article  PubMed  CAS  Google Scholar 

  • Eipper B. A., Stoffers D. A., and Mains R. E. (1992) The biosynthesis of neuropeptides: peptide α-amidation.Ann. Rev. Neurosci. 15, 57–85.

    Article  PubMed  CAS  Google Scholar 

  • Evinger M. J., Ernsberger P., Regunathan S., Joh T. H., and Reis D. J. (1994) A single transmitter regulates gene expression through two separate mechanisms: cholinergic regulation of phenylethanolamine N-methyltransferase mRNA via nicotinic and muscarinic pathways.J. Neurosci. 14, 2106–2116.

    PubMed  CAS  Google Scholar 

  • Fossom L. H., Carlson C. D., and Tank A. W. (1991) Stimulation of tyrosine hydroxylase gene transcription rate by nicotine in rat adrenal medulla.Molec. Pharmacol. 40, 193–202.

    CAS  Google Scholar 

  • Fossom L. H., Sterling C., and Tank A. W. (1991) Activation of tyrosine hydroxylase by nicotine in rat adrenal gland.J. Neurochem. 57, 2070–2077.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi H., Yang H. Y. T., and Sabol S. L. (1988) Rat neuropeptide Y precursor gene expression: mRNA structure tissue distribution and regulation by glucocorticoids, cyclic AMP, and phorbol ester.J. Biol. Chem. 263, 6288–6295.

    PubMed  CAS  Google Scholar 

  • Hiremagalur B., Nankova B., Nitahara J., Zeman R., and Sabban E. L. (1993) Nicotine increases expression of tyrosine hydroxylase gene: involvement of protein kinase A-mediated pathway.J. Biol. Chem. 268, 23,704–23,711.

    CAS  Google Scholar 

  • Hiremagalur B., Kvetnansky R., Nankova B., Fleisher J., Geertman R., Fukuhara K., Viskupic E., and Sabban E. L. (1994) Stress elicits trans-synaptic activation of adrenal neuropeptide Y gene expression.Mol. Brain Res. 27, 128–144.

    Article  Google Scholar 

  • Hiremagalur B. and Sabban E. L. (1995) Nicotine elicits changes in expression of adrenal catecholamine biosynthetic enzymes, neuropeptide Y and immediate early genes by injection but not continuous administration.Mol. Brain Res. 32, 109–115.

    Article  PubMed  CAS  Google Scholar 

  • Höfle G., Weiler R., Fischer-Colbrie R., Humpel C., Laslop A., Wohlfarter T., Hogue-Angeletti R., Saria A., Fleming P. J., and Winkler H. (1991) Stimulation of rat adrenal medulla can induce differential changes in the peptide and mRNA levels of chromogranins, neuropeptides, and other constituents of chromaffin granules.Regul. Peptides 32, 321–331.

    Article  Google Scholar 

  • Houpt T. A., Kim K. S., Joh T. H., and Wessel T. C. (1994) Acute reserpine treatment upregulates peptidylglycine alpha-amidating monooxygenase (PAM) mRNA in rat adrenal medulla and brain. Presented at the XVth Winter Neuropeptide Conference Breckenridge CO.

  • Kim K. S., Lee M. G., Carroll J. C., and Joh T. H. (1993) Both the basal and inducible transcription of the tyrosine hydroxylase gene are dependent upon a cAMP response element.J. Biol. Chem. 268, 17,454–17,458.

    Google Scholar 

  • Koistinaho J. (1991) Nicotine induced Fos-like immunoreactivity in rat sympathetic ganglia and adrenal medulla.Neurosci. Lett. 128, 47–51.

    Article  PubMed  CAS  Google Scholar 

  • Lamouroux A., Houhou L., Biguet N. F., Serck-Hanssen G., Guibert B., Icard-Liepkalns C., and Mallet J. (1993) Analysis of the human dopamine β-hydroxylase promoter: transcriptional induction by cyclic AMP.J. Neurochem. 60, 364–367.

    Article  PubMed  CAS  Google Scholar 

  • Lundberg J. M., Martinsson A., Hamsen A., Theodorsson-Norheim E., Svedenhag J., Ekblom B., and Hjemdahl P. (1985) Co-release of neuropeptide Y and catecholamines during physical exercise in man.Biochem. Biophys. Res. Commun. 133, 30–36.

    Article  PubMed  CAS  Google Scholar 

  • MacMahon A., Kvetnansky R., Fukuhara K., Weise V. K., Kopin I., and Sabban E. L. (1992) Regulation of tyrosine hydroxylase and dopamine β-hydroxylase mRNA levels in rat adrenals by a single and repeated immobilization stress.J. Neurochem. 58, 2124–2130.

    Article  Google Scholar 

  • Miner L. L., Pandalasi S. P., Weinberg E. P., Sells S. L., Kovacs D. M., and Kaplan B. B. (1992) Cold-induced alterations in the binding of adrenomedulary nuclear proteins to the promoter region of the tyrosine hydroxylase gene.J. Neurosci. Res. 33, 10.

    Article  PubMed  CAS  Google Scholar 

  • Minth C. A. and Dixon J. E. (1990) Regulation of the human neuropeptide Y gene.Ann. NY Acad. Sci. 611, 99–110.

    Article  PubMed  CAS  Google Scholar 

  • Ross E. M., Evinger M. J., Hyman S. E., Carroll J. M., Mucke L., Comb M., Reis D. J., Joh T. H., and Goodman H. M. (1990) Identification of a functional glucocorticoid response element in the phenylethanolamine N-methyltransferase promoter using fusion genes introduced into chromaffin cells in primary culture.J. Neurosci. 10, 520–530.

    PubMed  CAS  Google Scholar 

  • Schafer M. K.-H., Stoffers D. A., Eipper B. A., and Watson S. J. (1992) Expression of peptidylglycine α-amidating monooxygenase (EC 1.14.17.3) in the rat central nervous system.J. Neurosci. 12, 222–234.

    PubMed  CAS  Google Scholar 

  • Schalling M., Franco-Cereceda A., Hemsen A., Dagerlind A., Seroogy K., Persson H., Hökfelt T., and Lundberg J. M. (1991) Neuropeptide Y and catecholamine synthesizing enzymes and their mRNAs in rat sympathetic neurons and adrenal glands: studies on expression, synthesis and axonal transport after pharmacological and experimental manipulations using hybridization techniques and radioimmunoassy.Neuroscience 41, 753–766.

    Article  PubMed  CAS  Google Scholar 

  • Slotkin T. A. and Seidler F. G. (1976) Acute and chronic effects of nicotine on synthesis and storage of catecholamines in the rat adrenal medulla.Life Sci. 16, 1613–1622.

    Article  Google Scholar 

  • Stachowiak M. K., Sar M., Tuominen R. K., Jiang H.-K., An S., Iadarola M. J., Poisner A. M., and Hong J. S. (1990) Stimulation of adrenal medullary cells in vivo and in vitro induces expression of c-fos proto-oncogene.Oncogene 5, 69–73.

    PubMed  CAS  Google Scholar 

  • Stewart L. C. and Klinman J. P. (1988) Dopamine beta-hydroxylase of adrenal chromaffin granules: structure and function.Ann. Rev. Biochem. 57, 551–592.

    Article  PubMed  CAS  Google Scholar 

  • Ungar A. and Phillips J. H. (1983) Regulation of the adrenal medulla.Physiol. Rev. 63, 787–843.

    PubMed  CAS  Google Scholar 

  • Viskupic E., Kvetnansky R., Sabban E. L., Fukuhara K., Weise V. K., Kopin I. J., and Schwartz J. P. (1994) Increase in rat adrenal phenylethanolamine N-methyltransferase mRNA level caused by immobilization stress depends on intact pituitary-adrenocortical axis.J. Neurochem. 63, 808–814.

    Article  PubMed  CAS  Google Scholar 

  • Wan D. C.-C., Marley P. D., and Livett B. G. (1991) Coordinate and differential regulation of proenkephalin A and PNMT mRNA expression in cultured bovine adrenal chromaffin cells: responses to secretory stimuli.Mol. Brain Res. 9, 103–111.

    Article  PubMed  CAS  Google Scholar 

  • Wessel T. C. and Joh T. H. (1992) Parallel upregulation of catecholamine-synthesizing enzymes in rat brain and adrenal gland: effects of reserpine and correlation with immediate early gene expression.Mol. Brain Res. 15, 349–360.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahng, JW., Houpt, T.A., Joh, T.H. et al. Expression of catecholamine-synthesizing enzymes, peptidylglycine α-amidating monooxygenase, and neuropeptide Y mRNA in the rat adrenal medulla after acute systemic nicotine. J Mol Neurosci 8, 45–52 (1997). https://doi.org/10.1007/BF02736862

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736862

Index Entries

Navigation