Skip to main content
Log in

Mobile genetic elements in protozoan parasites

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Mobile genetic elements, by virtue of their ability to move to new chromosomal locations, are considered important in shaping the evolutionary course of the genome. They are widespread in the biological kingdom. Among the protozoan parasites several types of transposable elements are encountered. The largest variety is seen in the trypanosomatids—Trypanosoma brucei, Trypanosoma cruzi andCrithidia fasciculata. They contain elements that insert site-specifically in the spliced-leader RNA genes, and others that are dispersed in a variety of genomic locations.Giardia lamblia contains three families of transposable elements. Two of these are subtelomeric in location while one is chromosomeinternal.Entamoeba histolytica has an abundant retrotransposon dispersed in the genome. Nucleotide sequence analysis of all the elements shows that they are all retrotransposons, and, with the exception of one class of elements inT. cruzi, all of them are non-long-terminal-repeat retrotransposons. Although most copies have accumulated mutations, they can potentially encode reverse transcriptase, endonuclease and nucleic-acid-binding activities. Functionally and phylogenetically they do not belong to a single lineage, showing that retrotransposons were acquired early in the evolution of protozoan parasites. Many of the potentially autonomous elements that encode their own transposition functions have nonautonomous counterparts that probably utilize the functions intrans. In this respect these elements are similar to the mammalian LINEs and SINEs (long and short interspersed DNA elements), showing a common theme in the evolution of retrotransposons. So far there is no report of a DNA transposon in any protozoan parasite. The genome projects that are under way for most of these organisms will help understand the evolution and possible function of these genetic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adam R. D. 1991 The biology ofGiardia sp.Microbiol. Rev. 55, 706–732.

    PubMed  CAS  Google Scholar 

  • Agabian N. 1990 Trans splicing of nuclear pre-mRNAs.Cell 61, 1157–1160.

    Article  PubMed  CAS  Google Scholar 

  • Aksoy S., Lalor T. M., Martin J., Van der Ploeg L. H. T. and Richards F. F. 1987 Multiple copies of a retroposon interrupt spliced leader RNA gene in the African trypanosomeTrypanosoma gambiense.EMBO J. 6, 3819–3826.

    PubMed  CAS  Google Scholar 

  • Aksoy S., Williams S., Chang S. and Richards F. F. 1990 SLACS retrotransposon fromTrypanosoma brucei gambiense is similar to mammalian LINEs.Nucl. Acids Res. 18, 785–792.

    Article  PubMed  CAS  Google Scholar 

  • Arkhipova I. and Meselson M. 2001 Transposable elements in sexual and ancient asexual taxa.Proc. Natl. Acad. Sci. USA 97, 14473–14477.

    Article  Google Scholar 

  • Arkhipova I. R. and Morrison H. G. 2001 Three retrotransposon families in the genome ofGiardia lamblia: Two telomeric, one dead.Proc. Natl. Acad. Sci. USA 98, 14497–14502.

    Article  PubMed  CAS  Google Scholar 

  • Bagchi A. 2001 Studies on structure and organization of chromosomes inEntamoeba histolytica. Ph.D. thesis, Jawaharlal Nehru University, New Delhi, India.

    Google Scholar 

  • Bagchi A., Bhattacharya A. and Bhattacharya S. 1999 Lack of a chromosomal copy of the circular rDNA plasmid ofEntamoeba histolytica.Int. J. Parasitol. 29, 1775–1783.

    Article  PubMed  CAS  Google Scholar 

  • Bellofatto V., Cooper R. and Cross G. A. M. 1988 Discontinuous transcription inLeptomonas seymouri: presence of intact and interrupted mini-exon gene families.Nucl. Acids Res. 16, 7437–7456.

    Article  PubMed  CAS  Google Scholar 

  • Boeke J. D. 1997 Lines and Alus—the polyA connection.Nat. Genet. 16, 6–7.

    Article  PubMed  CAS  Google Scholar 

  • Boeke J. D. and Corces V. G. 1989 Transcription and reverse transcription of retrotransposons.Annu. Rev. Microbiol. 43, 403–434.

    Article  PubMed  CAS  Google Scholar 

  • Bringaud F., Biteau N., Melville S. E., Hez S., El-Sayed N. M., Leech V.et al. 2002 A new, expressed multigene family containing a hotspot for insertion of retroelements is associated with polymorphic subtelomeric regions ofTrypanosoma brucei.Euk. Cell 1, 137–151.

    Article  CAS  Google Scholar 

  • Burke W. D., Eickbush D. G., Xiong Y., Jakubczak J. and Eickbush T. H. 1993 Sequence relationships of retrotransposable elements R1 and R2 within and between divergent insect species.Mol. Biol. Evol. 10, 163–185.

    PubMed  CAS  Google Scholar 

  • Cano M. I., Gruber A., Vazquez M., Cortes A., Levin M. J., Gonzalez A.et al. 1995 Molecular karyotype of clone CL Brener chosen for theTrypanosoma cruzi genome project.Mol. Biochem. Parasitol. 71, 273–278.

    Article  PubMed  CAS  Google Scholar 

  • Chiurillo M. A., Cano I., Da Silveira J. F. and Ramirez J. L. 1999 Organization of telomeric and sub-telomeric regions of chromosomes from the protozoan parasiteTrypanosoma cruzi.Mol. Biochem. Parasitol. 100, 173–183.

    Article  PubMed  CAS  Google Scholar 

  • Cost G. J. and Boeke J. D. 1998 Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure.Biochemistry 37, 18081–18093.

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Reyes J., Ur-Rehman T., Spice W. M. and Ackers J. P. 1995 A novel transcribed repeat element fromEntamoeba histolytica.Gene 166, 183–184.

    Article  PubMed  CAS  Google Scholar 

  • Diamond L. S. and Clark C. G. 1993 A redescription ofEntamoeba histolytica Schaudinn 1903 (emended Walker 1911) separating it fromEntamoeba dispar Brumpt 1925.J. Euk. Microbiol. 40, 340–344.

    Article  PubMed  CAS  Google Scholar 

  • Djikeng A., Shi H., Tschudi C. and Ullu E. 2001 RNA interference inTrypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24–26-nucleotide RNAs.RNA 7, 1522–1530.

    PubMed  CAS  Google Scholar 

  • El-Sayed N. M., Hegde P., Quackenbush J., Melville S. E. and Donelson J. E. 2000 The African trypanosome genome.Int. J. Parasitol. 30, 329–345.

    Article  PubMed  CAS  Google Scholar 

  • Finnegan D. J. 1989 Eukaryotic transposable elements and genome evolution,Trends Genet. 5, 103–107.

    CAS  Google Scholar 

  • Finnegan D. J. 1997 Transposable elements: How nonLTR retrotransposons do it.Curr. Biol. 7, R245-R248.

    Article  PubMed  CAS  Google Scholar 

  • Gabriel A. and Boeke J. D. 1991 Reverse transcriptase encoded by a retrotransposon from the trypanosomatidCrithidia fasciculata.Proc. Natl. Acad. Sci. USA 88, 9794–9798.

    Article  PubMed  CAS  Google Scholar 

  • Gabriel A., Sisodia S. S. and Cleveland D. W. 1987 Evidence of discontinuous transcription in the trypanosomatidCrithidia fasciculata.J. Biol. Chem. 262, 16192–16199.

    PubMed  CAS  Google Scholar 

  • Gabriel A., Yen T. J., Schwartz D. C., Smith C. L., Boeke J. D., Sollner-Webb B. and Cleveland D. W. 1990 A rapidly rearranging retrotransposon within the miniexon gene locus ofCrithidia fasciculata.Mol. Cell. Biol. 10, 615–624.

    PubMed  CAS  Google Scholar 

  • Hasan G., Turner M. J. and Cordingley J. S. 1984 Complete nucleotide sequence of an unusual mobile element fromTrypanosoma brucei.Cell 37, 333–341.

    Article  PubMed  CAS  Google Scholar 

  • Hay J. M., Jones M. C., Blakebrough M. L., Dasgupta I., Davies J. W. and Hull R. 1991 An analysis of the sequence of an infectious clone of rice tungro bacilliform virus, a plant pararetrovirus.Nucl. Acids Res. 19, 2615–2621.

    Article  PubMed  CAS  Google Scholar 

  • Hurst G. D. D. and Werren J. H. 2001 The role of selfish genetic elements in eukaryotic evolution.Nat. Rev. Genet. 2, 597–606.

    Article  PubMed  CAS  Google Scholar 

  • Hutchison C. A., Hardies S. C., Loeb D. D., Shehee W. R. and Edgell M. H. 1989 LINEs and related retroposons: long interspersed repeated sequences in the eukaryotic genome. InMobile DNA. (ed. D. E. Berg and M. M. Howe), pp. 593–617. American Society for Microbiology, Washington, D. C.

    Google Scholar 

  • Johnson M. S., McClure M. A., Feng D. F., Gray J. and Doolittle R. F. 1986 Computer analysis of retroviral Pol genes: assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes.Proc. Natl. Acad. Sci. USA 83, 7648–7652.

    Article  PubMed  CAS  Google Scholar 

  • Kazazian H. H. 1998 Mobile elements and disease.Curr. Opin. Genet. Dev. 8, 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Kazazian H. H. 2000 L1 retrotransposons shape the mammalian genome.Science 289, 1152–1153.

    Article  PubMed  CAS  Google Scholar 

  • Ketting R. F., Haverkamp T. H., van Luenen H. G. and Plasterk R. H. 1999 Mut-7 ofC. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNase D.Cell 99, 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Kimmel B. E., Ole-Moiyoi O. K. and Young J. R. 1987 Ingi, a 5.2 kb dispersed sequence element fromTrypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian LINEs.Mol. Cell. Biol. 7, 1465–1475.

    PubMed  CAS  Google Scholar 

  • Levskaya O., Slot F., Pavlova M. and Pardue M. L. 1994 Structure of theDrosophila HET-A transposon—a retrotransposon-like element forming telomeres.Chromosoma 103, 215–224.

    Google Scholar 

  • Lodes M. J., Smiley B. L., Stadnyk A. W., Bennett L., Myler P. J. and Stuart K. 1993 Expression of a retroposon-like sequence upstream of the putativeTrypanosoma brucei variant surface glycoprotein gene expression site promoter.Mol. Cell. Biol. 13, 7036–7044.

    PubMed  CAS  Google Scholar 

  • Loeb D. D., Padgett R. W., Hardies S. C., Shehee W. R., Comer M. B., Edgell M H. and Hutchison C. A. 1986 The sequence of a large L1Md element reveals a tandemly repeated 5’ end and several features found in retrotransposons.Mol. Cell. Biol. 6, 168–182.

    PubMed  CAS  Google Scholar 

  • Luan D. D., Korman M. H., Jakubczak J. L. and Eickbush T. H. 1993 Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for nonLTR retrotransposition.Cell 72, 595–605.

    Article  PubMed  CAS  Google Scholar 

  • Lushbaugh W. B. and Miller J. H. 1988 The morphology ofEntamoeba histolytica. InAmebiasis: human infection by Entamoeba histolytica (ed. J. I. Ravdin), pp. 41–68. Wiley, New York.

    Google Scholar 

  • Malik H. S. and Eickbush T. H. 2000 NeSL-1, an ancient lineage of site-specific non-LTR retrotransposons fromCaenorhabditis elegans.Genetics 154, 193–203.

    PubMed  CAS  Google Scholar 

  • Malik H. S., Burke W. D. and Eickbush T. H. 1999 The age and evolution of non-LTR retrotransposable elements.Mol. Biol. Evol. 16, 793–805.

    PubMed  CAS  Google Scholar 

  • Martin F., Maranon C., Olivares M., Alonso C. and Lopez M. C. 1995 Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) fromTrypanosoma cruzi: Homology of the first ORF with the APE family of DNA repair enzymes.J. Mol. Biol. 247, 49–59.

    Article  PubMed  CAS  Google Scholar 

  • Martin S. L. and Bushman F. D. 2001 Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon.Mol. Cell. Biol. 21, 467–475.

    Article  PubMed  CAS  Google Scholar 

  • Miller J., McLachlan A. D. and Klug A. 1985 Repetive zinc binding domains in the protein transcription factor IIIA fromXenopus oocytes.EMBO J. 4, 1609–1614.

    PubMed  CAS  Google Scholar 

  • Mizrokhi L. J., Georgieva S. G. and Ilyin Y. V. 1988 Jockey, a mobileDrosophila element similar to mammalian LINEs, is transcribed from the internal promoter by RNA polymerase II.Cell 54, 685–691.

    Article  PubMed  CAS  Google Scholar 

  • Murphy N. B., Pays A., Tebabi P., Coquelet H., Guyaux M., Steinert M. and Pays E. 1987Trypanosoma brucei repeated element with unusual structural and transcriptional properties.J. Mol. Biol. 195, 855–871.

    Article  PubMed  CAS  Google Scholar 

  • Okada N., Hamada M., Ogiwara I. and Ohshima K. 1997 SINEs and LINEs share common 3′ sequences: a review.Gene 205, 229–243.

    Article  PubMed  CAS  Google Scholar 

  • Olivares M., Alonso C. and Lopez M. C. 1997 The open reading frame 1 of the L1Tc retrotransposon ofTrypanosoma cruzi codes for a protein with apurinic-apyrimidinic nuclease activity.J. Biol. Chem. 272, 25224–25228.

    Article  PubMed  CAS  Google Scholar 

  • Olivares M., Thomas C. M., Alonso C. and Lopez M. C. 1999 The L1Tc, long interspersed nucleotide element fromTrypanosoma cruzi, encodes a protein with 3′-phosphatase and 3′-phosphodiesterase enzymatic activities.J. Biol. Chem. 274, 23883–23886.

    Article  PubMed  CAS  Google Scholar 

  • Pardue M. L., Danilevskaya O. N., Lowenhaupt K., Wong J. and Erby K. 1996 The gag coding region of theDrosophila telomeric retrotransposon, HeT-A, has an internal frame shift and a length polymorphic region.J. Mol Evol. 43, 572–583.

    Article  PubMed  CAS  Google Scholar 

  • Pardue M., Baryshe P. G. and Lowenhaupt K. 2001 Another protozoan contributes to understanding telomeres and transposable elements.Proc. Natl. Acad. Sci. USA 98, 14195–14197.

    Article  PubMed  CAS  Google Scholar 

  • Sharma R., Bagchi A., Bhattacharya A. and Bhattacharya S. 2001 Characterization of a retrotransposon-like element fromEntamoeba histolytica.Mol. Biochem. Parasitol. 116, 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Tchurikov N. A., Gerasimova T. I., Johnson T. K., Barbakar N. I., Kenzior A. L. and Georgiev G. P. 1989 Mobile elements and transposition events in the cut locus ofDrosophila melanogaster.Mol. Gen. Genet. 219, 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Teng S.-C., Wang S. X. and Gabriel A. 1995 A new non-LTR retrotransposon provides evidence for multiple distinct sitespecific elements inCrithidia fasciculata mini exon arrays.Nucl. Acids Res. 23, 2929–2936.

    Article  PubMed  CAS  Google Scholar 

  • Teng S.-C., Kim B. and Gabriel A. 1996 Retrotransposon reverse transcriptase-mediated repair of chromosomal breaks inSaccharomyces cerevisiae.Nature 383, 641–644.

    Article  PubMed  Google Scholar 

  • Vassella E., Roditi I. and Braun R. 1996 Heterogeneous transcripts of RIMR/INGI retroposons inTrypanosoma brucei are unspliced.Mol. Biol. Parasitol. 82, 131–135.

    Article  CAS  Google Scholar 

  • Vazquez M., Schijman A. G. and Levin M. J. 1994 A short interspersed repetitive element provides a new 3′ acceptor site for trans-splicing in certain ribosomal P2-protein genes ofTrypanosoma cruzi.Mol. Biochem. Parasitol. 64, 327–336.

    Article  PubMed  CAS  Google Scholar 

  • Vazquez M., Lorenzi H., Schijman A. G., Ben-Dov C. and Levin M. J. 1999 Analysis of the distribution of SIRE in the nuclear genomeof Trypanosoma cruzi.Gene 239, 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Vazquez M., Ben-Dov C., Lorenzi H., Moore T., Schijman A. and Levin M. J. 2000 The short interspersed repetitive element ofTrypanosoma cruzi, SIRE, is part of VIPER, an unusual retroelement related to long terminal repeat retrotransposons.Proc. Natl. Acad. Sci. USA 97, 2128–2133.

    Article  PubMed  CAS  Google Scholar 

  • Villanueva M. S., Williams S. P., Beard C. B., Richards F. F. and Aksoy S. 1991 A new member of a family of site-specific retrotransposons is present in the spliced leader RNA genes ofTrypanosoma cruzi.Mol. Cell. Biol. 11, 6139–6148.

    PubMed  CAS  Google Scholar 

  • Weiner A. M. 2000 Do all SINEs lead to LINEs?Nat. Genet. 24, 332–333.

    Article  PubMed  CAS  Google Scholar 

  • Willhoeft U. and Tannich E. 1999 The electrophoretic karyo-type ofEntamoeba histolytica.Mol. Biochem. Parasitol. 99, 41–53.

    Article  PubMed  CAS  Google Scholar 

  • Willhoeft U., Heidrun B. and Tannich E. 1999 Analysis of cDNA expressed sequence tags fromEntamoeba histolytica: Identification of two highly abundant polyadenylated transcripts with no overt open reading frames.Protist 150, 61–70.

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y. and Eickbush T. H. 1988 The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons.Mol. Cell. Biol. 8, 114–123.

    PubMed  CAS  Google Scholar 

  • Xiong Y. and Eickbush T. H. 1990 Origin and evolution of retro-elements based upon their reverse transcriptase sequences.EMBO J. 9, 3353–3362.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudha Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, S., Bakre, A. & Bhattacharya, A. Mobile genetic elements in protozoan parasites. J Genet 81, 73–86 (2002). https://doi.org/10.1007/BF02715903

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02715903

Keywords

Navigation