Skip to main content
Log in

Enzymatically hydrolyzable protein and carbohydrate sedimentary pools as indicators of the trophic state of detritus sink systems: A case study in a Mediterranean coastal lagoon

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

In order to classify the trophic state of detritus sink systems, instead of the conventional indicators based on inorganic nutrient availability and algal biomass and productivity in the water column, we used new biochemical descriptors based on the amount of sedimentary organic carbon (C) and nitrogen (N) potentially available to heterotrophs. We investigated spatial and temporal changes in microphytobenthic biomass, organic matter biochemical composition, and enzymatically hydrolyzable protein and carbohydrate pools along a north-south transect in the Marsala lagoon (Mediterranean Sea, Italy) at three stations characterized by different hydrodynamic conditions and organic matter content in the sediment. In the Marsala lagoon water currents decreased from north to south and this pattern was reflected by organic matter distribution and composition. Sediment organic matter concentrations were among the highest reported in the literature and, in the central area where large meadows of the seagrassPosidonia oceanica were present, display a strong dominance of highly refractory carbohydrates. The protein to carbohydrate ratio was always < 1, indicating the dominance of aged organic detritus. Microphytobenthic biomass displayed an increasing pattern southward, and its contribution to the biopolymeric C pools ranged from negligible in the central sector of the lagoon to 50% in its northern part, indicating that sources of sediment organic C also changed along the hydrodynamic gradient. The percentage contribution of the enzymatically hydrolyzable fraction of proteins and carbohydrates was inversely related to total protein and total carbohydrate concentrations, respectively, suggesting that bioavailability of organic C and N increased with decreasing organic matter content in the sediment and with increasing hydrodynamic regime. Microphytobenthic contribution to biopolymeric C (as a proxy of autotrophic organic C) and the ratio of the enzymatically digestible fraction to biopolymeric C (as an indicator of organic matter liability) were significantly correlated, suggesting that chlorophylla sediment content might be used as an indicator of food promptly available to consumers. The present study also highlighted that the ratio of labile (i.e., enzymatically digestible) versus biopolymeric organic C in the sediments tends to decrease with increasing organic matter content, due to the increase of the refractory fraction of organic C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Berner, R. A. 1995. Sedimentary organic matter preservation: An assessment and speculative synthesis—A comment.Marine Chemistry 49:121–122.

    Article  CAS  Google Scholar 

  • Bianchi, T. S. andE. A. Canuel. 2001. Organic geochemical tracers in estuaries.Organic Geochemistry 32:451.

    Article  CAS  Google Scholar 

  • Bligh, E. G. andW. J. Dyer. 1959. A rapid method for total lipid extraction and purification. Canadian.Journal of Biochemistry and Physiology 37:911–917.

    CAS  Google Scholar 

  • Canuel, E. A. 2001. Relations between river flow, primary production and fatty acid composition of particulate organic matter in San Francisco and Chesapeake Bays: A multivariate approach.Organic Geochemistry 32:563–583.

    Article  CAS  Google Scholar 

  • Cloern, J. E. 1995. An empirical model of the phytoplankton chlorophyll: Carbon ratio—The conversion factor between productivity and growth rate.Limnology and Oceanography 40: 1313–1321.

    Google Scholar 

  • Cloern, J. E. 2001. Our evolving conceptual model of the coastal eutrophication problem.Marine Ecology Progress Series 210: 223–253.

    Article  CAS  Google Scholar 

  • Cognetti, G. 2001. Marine eutrophication: The need for a new indicator system.Marine Pollution Bulletin 42:163–164.

    Article  CAS  Google Scholar 

  • Conde, D., S. Bonilla, L. Aubriot, R. de Leon, andW. Pintos. 1999. Comparison of the areal amount of chlorophylla of planktonic and attached microalgae in a shallow coastal lagoon.Hydrobiologia 408/409:285–291.

    Article  Google Scholar 

  • Danovaro, R. 1996. Detritus-bacteria-meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean.Marine Biology 127:1–13.

    Article  CAS  Google Scholar 

  • Danovaro, R., A. Dell'Anno, andM. Fabiano. 2001. Biovailability of organic matter in the sediments of the Porcupine Abyssal Plain.Marine Ecology Progress Series 220:25–32.

    Article  CAS  Google Scholar 

  • Danovaro, R., M. Fabiano, andN. Della Croce. 1993. Labile organic matter and microbial biomasses in deep-sea sediments (Eastern Mediterranean Sea).Deep Sea Research 40:953–965.

    Article  CAS  Google Scholar 

  • Danovaro, R., C. Gambi, E. Manini, andM. Fabiano 2000. Meiofauna response to a dynamic river plume front.Marine Biology 137:359–370.

    Article  CAS  Google Scholar 

  • Danovaro, R., A. Pusceddu, A. Covazzi Harriague, D. Marrale, A. Dell’Anno, M. Petrillo, G. Albertelli, andN. Della Croce. 1999. Community experiments using benthic chambers: Microbial significance in highly organic enriched sediments.Chemistry and Ecology 16:7–30.

    Article  CAS  Google Scholar 

  • Dauwe, B. andJ. J. Middelburg. 1998. Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments.Limnology and Oceanography 43:782–798.

    CAS  Google Scholar 

  • Dauwe, B., J. J. Middelburg, P. M. J. Herman, andC. H. R. Heip. 1999a. Linking diagenetic alteration of amino acids and bulk organic matter reactivity.Limnology and Oceanography 44:1809–1814.

    CAS  Google Scholar 

  • Dauwe, B., J. J. Middelburg, P. Van-Rijswijk, J. Sinke, P. M. J. Herman, andC. H. R. Heip. 1999b. Enzymatically hydrolyzable amino acids in North Sea sediments and their possible implication for sediment nutrietional values.Journal of Marine Research 57:109–134.

    Article  CAS  Google Scholar 

  • De Jonge, V. E. 1980. Fluctuations in the organic carbon to chlorophylla ratios for estuarine benthic diatom populations.Marine Ecology Progress Series 2:345–353.

    Article  Google Scholar 

  • Dell'Anno, A., M. Fabiano, M. L. Mei, andR. Danovaro. 2000. Enzymatically hydrolised protein and carbohydrate pools in deep-sea sediments: Estimates of the potential bioavailable fraction and methodological considerations.Marine Ecology Progress Series 196:15–23.

    Article  Google Scholar 

  • Fabiano, M. andR. Danovaro. 1994. Composition of organic matter in sediments facing a river estuary (Tyrrhenian Sea): Relationships with bacteria and microphytobenthic biomass.Hydrobiologia 277:71–84.

    Article  CAS  Google Scholar 

  • Fabiano, M., R. Danovaro, andS. Fraschetti. 1995. A threeyear time series of elemental and biochemical composition of organic matter in subtidal sediments of the Ligurian Sea (northwestern Mediterranean).Continental Shelf Research 15: 1453–1469.

    Article  Google Scholar 

  • Fabiano, M., G. Sarà, A. Mazzola, andA. Pusceddu. 2000. Environmental constrains on pathways of organic detritus in a semi-enclosed marine system (W-Mediterranean), p. 435–445.In F. M. Faranda, L. Guglielmo, and G. Spezie (eds.), Structures and Processes in the Mediterranean Ecosystems. Springer-Verlag, Italy.

    Google Scholar 

  • Garrigue, C. 1998. Distribution and biomass of microphytes measured by benthic chlorophylla in a tropical lagoon (New Caledonia, South Pacific).Hydrobiologia 385:1–10.

    Article  CAS  Google Scholar 

  • Gerchacov, S. M. andP. G. Hatcher. 1972. Improved technique for analysis of carbohydrates in sediment.Limnology and Oceanography 17:938–943.

    Article  Google Scholar 

  • Giovanardi, F. andE. Tromellini. 1992. Statistical assessment of trophic conditions. Application of the OECD methodology to the marine environment.The Science of the Total Environment 1992:211–234.

    Google Scholar 

  • Hartree, E. F. 1972. Determination of proteins: A modification of the Lowry method that gives a linear photometric response.Analytical Biochemistry 48:422–427.

    Article  CAS  Google Scholar 

  • Harvey, H. R. andA. Mannino. 2001. The chemical composition and cycling of particulate and macromolecular dissolved organic matter in temperature estuaries as revealed by molecular organic tracers.Organic Geochemistry 32:527–542.

    Article  CAS  Google Scholar 

  • Hopkinson, C. S., I. Buffam, J. Hobbie, J. Vallino, M. Perdue, B. Eversmeyer, F. Prahl, J. Covert, R. Hodson, M. A. Moran, E. Smith, J. Baross, B. Crump, S. Findlay, andK. Foreman. 1998. Terrestrial inputs of organic matter to coastal ecosystems: An intercomparison of chemical characteristics and bioavailability.Biogeochemistry 43:211–234.

    Article  CAS  Google Scholar 

  • Ignatiades, L., M. Karydis, andP. Vounatsou. 1992. A possible method for evaluating oligotrophy and eutrophication based on nutrient concentration scales.Marine Pollution Bulletin 24: 238–243.

    Article  CAS  Google Scholar 

  • Jorgensen, B. B. 1996. Material flux in the sediment, p. 115–135.In B. B. Jorgensen and K. Richardson (eds.), Eutrophication in Coastal Marine Ecosystems. American Geophysical Union. Washington, D.C.

    Google Scholar 

  • Karydis, M., L. Ignatiades, andN. Moschopoulou. 1983. An index associated with nutrient eutrophication in the marine environment.Estuarine, Coastal and Shelf Science 16:339–344.

    Article  CAS  Google Scholar 

  • Kenworthy, W. J. andG. W. Thayer. 1984. Production and decomposition of the roots and rhizomes of seagrassesZostera marina andThalassia testudinum in temperate and subtropical marine ecosystems.Bulletin of Marine Science 35:364–379.

    Google Scholar 

  • Koester, M. andL.-A. Meyer-Reil. 2001. Characterization of carbon and microbial biomass pools in shallow water coastal sediments of the southern Baltic Sea (Nordruegensche Bodden).Marine Ecology Progress Series 26:25–41.

    Article  Google Scholar 

  • Lawrence, J. M., Ch.-F. Boudouresque, andF. Maggiore. 1989. Proximate constituents, biomass and energy inPosidonia oceanica (Potamogetonaceae).Marine Ecology Pubblicazioni Stazione Zoologica Napoli Italia 10:263–270.

    Google Scholar 

  • Lucas, C. H., J. Widdows, M. D. Brindlsey, P. N. Salkeld, andP. M. J. Herman. 2000. Benthic-pelagic exchange of microalgae at a tidal flat. 1. Pigment analysis.Marine Ecology Progress Series 196:59–73.

    Article  CAS  Google Scholar 

  • Maimone, G., A. Cosenza, andE. Crisafi. 2000. Phytoplankton annual cycle in a lagoon of the western Sicily (Stagnone of Marsala).Biologia Marina Mediterranea 7:868–873.

    Google Scholar 

  • Manini, E., M. Fabiano, andR. Danovaro. 2001. Benthic response to mucilaginous aggregates in the northern Adriatic Sea: Biochemical indicators of eutrophication.Chemistry and Ecology 17:171–179.

    Article  Google Scholar 

  • Marsh, J. B. andD. B. Wenstein 1966. A simple charring method for determination of lipids.Journal of Lipid Research 7:574–576.

    CAS  Google Scholar 

  • Mazzola, A., M. Fabiano, A. Pusceddu, andG. Sarà. 2001. Biochemical composition of suspended particulate matter in a semi-enclosed marine system.Chemistry and Ecology 17:315–334.

    Article  CAS  Google Scholar 

  • Mazzola, A. andG. Sarà. 1995. Hydrological features of Mediterranean coastal lagoon (Stagnone di Marsala—Western Sicily): Qualitative hydrodynamic model.Naturalista Siciliano 19: 229–277.

    Google Scholar 

  • Meyer-Reil, L. A. 1983. Benthic response to sedimentation events in the Western Kiel Bight. II Analysis of benthic bacterial populations.Marine Biology 77:247–256.

    Article  CAS  Google Scholar 

  • Neira, C., J. Sellanes, A. Soto, D. Gutiérrez, andV. A. Gallardo. 2001. Meiofauna sedimentary organic matter off Central Chile: Response to changes caused by the 1997–1998 El Niño.Oceanologica Acta 24:313–328.

    Article  CAS  Google Scholar 

  • Newell, R. C. 1982. The energetics of detritus utilisation in coastal lagoons and nearshore waters.Oceanologica Acta 1:377–355.

    Google Scholar 

  • Nixon, S. W. 1995. Coastal marine eutrophication: A definition, social causes, and future concenrns.Ophelia 41:199–219.

    Google Scholar 

  • Plante-Cuny, M. R. 1974. Evaluation par spectrophotométrie des teneurs en chlorophyll-a fonctionelle er en phaeopigments des substrates meubles marins. Document ORSTOM, Institut Français de Recherche Scientifique pour le Dévelopment en Coopération, Nosy-Bé, Madagascar.

    Google Scholar 

  • Pusceddu, A. 1999. Composition of particulate organic matter in two Mediterranean coastal lagoons.Proceedings of the XIII Congress of the Italian National Association of Limnology and Oceanography 13:55–64.

    Google Scholar 

  • Pusceddu, A., A. Dell'Anno, andM. Fabiano. 2000. Organic matter composition in coastal sediments at Terra Nova Bay (Ross Sea) during summer 1995.Polar Biology 23:288–293.

    Article  Google Scholar 

  • Pusceddu, A., G. Sarà, M. Armeni, M. Fabiano, andA. Mazzola. 1999. Seasonal and spatial changes in the sediment organic matter of a semi-enclosed marine system (W-Mediterranean Sea).Hydrobiologia 397:59–70.

    Article  CAS  Google Scholar 

  • Pusceddu, A., G. Sarà, A. Mazzola, andM. Fabiano. 1997. Relationships between suspended and sediment organic matter in a semi-enclosed marine system: The Stagnone di Marsala sound (Western Sicily).Water Air Soil Pollution 99:343–352.

    CAS  Google Scholar 

  • Raymond, P. A. andJ. E. Bauer. 2001. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: A review and synthesis.Organic Geochemistry 32:469–485.

    Article  CAS  Google Scholar 

  • Rice, D. L. 1982. The detritus nitrogen problem: New observations and perspectives from organic geochemistry.Marine Ecology Progress Series 9:153–162.

    Article  CAS  Google Scholar 

  • Rice, D. L. andD. C. Rhoads. 1989. Early diagenesis of organic matter and the nutritional values of sediment, p. 60–97.In G. Lopez, G. Taghon, and J. Levinton (eds.), Ecology of Marine Deposit Feeders. Lecture notes on coastal and estuarine studies. Springer-Verlag, New York.

    Google Scholar 

  • Sarà G., M. Leonardi, andA. Mazzola. 1999. Spatial and temporal changes of suspended matter in relation to wind and vegetation cover in a Mediterranean shallow coastal environment.Chemistry and Ecology 16:151–173.

    Article  Google Scholar 

  • Shi, W., M. Sun, M. Molina, andR. E. Hodson. 2001. Variability in the distribution of lipid biomarkers and their molecular isotopic composition in Alltamaha estuarine sediments: Implications for the relative contribution of organic matter from various sources.Organic Geochemistry 32:453–467.

    Article  CAS  Google Scholar 

  • Troussellier, M., G. Cahet, P. Lebaron, andB. Baleux. 1993. Distribution and dynamics of bacterial production in relation to wind perturbations in a Mediterranean lagoon.Limnology and Oceanography 38:193–201.

    Article  Google Scholar 

  • Tselepides, A., A. Dell'Anno, T. Polychronaki, I. Akoumianaki, D. Marrale, A. Pusceddu, M. Fabiano, andR. Danovaro. 2000. Organic matter composition of the continental shelf and bathyal sediments of the Cretan Sea (NE Mediterranean).Progress in Oceanography 46:311–344.

    Article  Google Scholar 

  • Vizzini, S. 2000. Sedimentological features of a western Sicily coastal sound.Biologia Marina Mediterranea 7:778–781.

    Google Scholar 

  • Vollenweider, R. A., F. Giovanardi, G. Montanari, andA. Rinaldi. 1998. Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: Proposal for a trophic scale, turbidity and generalized water quality index.Environmetrics 9:329–357.

    Article  CAS  Google Scholar 

  • Wainright, S. C. 1987. Stimulation of heterotrophic microplankton production by resuspended marine sediments.Science 238: 1710–1712.

    Article  CAS  Google Scholar 

  • Wainright, S. C. 1990. Sediment-to-water fluxes of particulate material and microbes by resuspension and their contribution to the planktonic food web.Marine Ecology Progress Series 62: 271–281.

    Article  Google Scholar 

  • Wainright, S. C. andC. S. Hopkinson, Jr. 1997. Effects of sediment resuspension on organic matter processing in coastal environments: A simulation model.Journal of Marine Systems 11:353–368.

    Article  Google Scholar 

  • Zurlini, G. 1996. Multiparametric classification of trophic conditions. The OECD methodology extended: Combined probabilities and uncertainties—Application to the North Adriatic Sea.The Science of Total Environment 182:169–185.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Pusceddu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pusceddu, A., Dell'Anno, A., Danovaro, R. et al. Enzymatically hydrolyzable protein and carbohydrate sedimentary pools as indicators of the trophic state of detritus sink systems: A case study in a Mediterranean coastal lagoon. Estuaries 26, 641–650 (2003). https://doi.org/10.1007/BF02711976

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02711976

Keywords

Navigation