Skip to main content
Log in

Mutation and homozygous deletion analyses of genes that control the G1/S transition of the cell cycle in skin melanoma: p53, p21, p16 and p15

  • Original Articles
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Introduction

The role of genes involved in the control of progression from the G1 to the S phase of the cell cycle in melanoma tumors is not fully known.

Material and methods

The aims of our study were to analyse alterations in p53, p21, p16 and p15 genes in melanoma tumors and melanoma cell lines by single strand conformational polymorphism (SSCP), and to detect homozygous deletions. We analysed the DNA from 39 patients with primary and metastatic melanomas, and from 9 melanoma cell lines.

Results

The SSCP technique showed heterozygous defects in the p53 gene in 8 or 39 (20.5%) melanoma tumors: three point mutations in intron sequences (introns 1 and 2) and exon 10, and three new polymorphisms located in introns 1 and 2 (C to T transition at position 11701 in intron 1; C insertion at position 11818 in intron 2; and C insertion at position 11875 in intron 2). One melanoma tumor exhibited two heterozygous alterations in the p16 exon 1 (stop codon and missense mutation). No defects were found in the remaining genes. Homozygous deletions were more frequent in melanoma cell lines than in melanoma tumors in p21, p16 and p15 (22.2%, 44.4%, and 44.4% versus 7.7%, 2.5%, and 5.1% respectively). TP53 did not show homozygous deletions.

Conclusions

Our results suggest that these genes are involved in melanoma tumorigenesis; but perhaps not in the major targets. Other suppressor genes that may be informative of the mechanism of tumorigenesis in skin melanomas need to be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ekholm SV, Reed SI. Regulation of G1 cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol. 2000;12:676–84.

    Article  PubMed  CAS  Google Scholar 

  2. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.

    PubMed  CAS  Google Scholar 

  3. El-Deiry W, Tokino T, Velculescu VE, et al. WAFI, a potential mediator of p53 tumor suppression. Cell. 1993; 75:817–25.

    Article  PubMed  CAS  Google Scholar 

  4. Harper JW, Adami G, Wei N, Keyomarsi K, Elledge S. The p21 cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75:805–16.

    Article  PubMed  CAS  Google Scholar 

  5. Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin/cdk protein kinase activity, is related to p21. Cell. 1994;78:67–74.

    Article  PubMed  CAS  Google Scholar 

  6. Lee MH, Reynisdottir I, Massagué J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 1995; 9:639–49.

    Article  PubMed  CAS  Google Scholar 

  7. Ruas M, Peters G. The p16INKa/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta Rev Cancer. 1998;1378:F115–77.

    Article  CAS  Google Scholar 

  8. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993;366:704–7.

    Article  PubMed  CAS  Google Scholar 

  9. Hannon GJ, Beach D. p15INK4b is a potential effector of TGFβ-induced cell cycle arrest. Nature. 1994;371:257–61.

    Article  PubMed  CAS  Google Scholar 

  10. Hirai H, roussel MF, Kato J, Ashmun RA, Sherr CJ. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol. 1995;15:2672–81.

    PubMed  CAS  Google Scholar 

  11. Lohrum M, Vousden K. Regulation and function of the p53-related proteins: same family, different rules. Trends Cell Biol. 2000;10:197–202.

    Article  PubMed  CAS  Google Scholar 

  12. Rich T, Allen RL, Wyllie AH. Defying death after DNA damage. Nature. 2000;407:777–83.

    Article  PubMed  CAS  Google Scholar 

  13. Hainaut P, Soussi T, Shomer B, et al. Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucleic Acids Res. 1997;25:151–7.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang SY, Klein-Szanto AJ, Sauter ER, et al. Higher frequency of alterations in the p16/CDKN2 gene in squamous cell carcinoma cell lines than in primary tumors of the head and neck. Cancer Res. 1994;54:5050–3.

    PubMed  CAS  Google Scholar 

  15. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin dependent kinase 4 inhibitor gene in multiple human cancers. Nature. 1994; 368:753–6.

    Article  PubMed  CAS  Google Scholar 

  16. Yonghas T, Quian H, Chuanyuan L, Yandell DW. Deletions and point mutations of p16, p15 genes in primary tumors and tumors cell lines. Chin Med Sci J. 1999; 14:200–5.

    Google Scholar 

  17. Kawamura M, Ohnishi H, Guo SX, et al. Alterations of the p53, p21, p16, p15 and RAS genes in childhood T-cell acute lymphoblastic leukemia. Leuk Res. 1999; 23:115–26.

    Article  PubMed  CAS  Google Scholar 

  18. Moles JP, Moyret C, Guillot B, et al. p53 gene mutations in human epithelial skin cancers. Oncogene. 1993;8: 583–8.

    PubMed  CAS  Google Scholar 

  19. Campbell C, Quinn AG, Ro YS, Angus B, Rees JL. p53 mutations are common and early events that precede tumor invasion in squamous cell neoplasia of the skin. J Invest Dermatol. 1993;100:746–8.

    Article  PubMed  CAS  Google Scholar 

  20. Lubbe J, Reichel M, Burg G, Kleihues P. Absence of p53 gene mutations in cutaneous melanoma. J Invest Dermatol. 1994;102:819–21.

    Article  PubMed  CAS  Google Scholar 

  21. Hartmann A, Blaszyk H, Cunningham JS, et al. Overexpression and mutations of p53 in metastatic malignant melanomas. Int J Cancer. 1996;67:313–7.

    Article  PubMed  CAS  Google Scholar 

  22. Zerp SF, Elsas A van, Peltenburg LTC, Schrier PI. P53 mutations in human cutaneous melanoma correlate with sun exposure but are not always involved in melanogenesis. Br J Cancer. 1999;79:921–6.

    Article  PubMed  CAS  Google Scholar 

  23. Giglia-Mari G, Sarasin A. TP53 mutations in human skin cancers. Hum Mutat. 2003;21:217–28.

    Article  PubMed  CAS  Google Scholar 

  24. Chin L. The genetics of malignant melanoma: lessons from mouse and man. Nat Rev Cancer. 2003;3:559–70.

    Article  PubMed  CAS  Google Scholar 

  25. Hayward NK. Genetics of melanoma predisposition. Oncogene. 2003;22(20):3053–62.

    Article  PubMed  CAS  Google Scholar 

  26. Matsumura Y, Nishigori C, Yagi T, Imamura S, Takebe H. Mutations of p16 and p15 tumor suppressor genes and replication errors contribute independently to the pathogenesis of sporadic malignant melanoma. Arch Dermatol Res. 1998;290:175–80.

    Article  PubMed  CAS  Google Scholar 

  27. Kirkin AF, Petersen TR, Olsen AC, Li L, thor Straten P, Zeuthen J. Generation of human-melanoma-specific T lymphocyte clones defining novel cytolytic targets with panels of newly established melanoma cell lines. Cancer Immunol Immunother. 1995;41:71–6.

    PubMed  CAS  Google Scholar 

  28. Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using polymerase chain reaction. Genomics. 1989;5:874–9.

    Article  PubMed  CAS  Google Scholar 

  29. Prosser J. Detecting single-base mutations. TIBTECH. 1993;11:238.

    CAS  Google Scholar 

  30. Oliva MR, Saez GT, Latres E, Cordon-Cardo C. A new polymorphic site in intron 2 to TP53 characterizes LOH in human tumors by PCR-SSCP. Diagn Mol Pathol. 1995;4:54–8.

    Article  PubMed  CAS  Google Scholar 

  31. Cleaver JE, Crowley E. UV damage, DNA repair and skin carcinogenesis. Front Biosci. 2002;7:1024–43.

    Article  Google Scholar 

  32. Ziegler A, Leffell DJ, Kunala S, et al. Mutation hotspots due to sunlight in the p53 gene of non-melanoma skin cancers. Proc Natl Acad Sci USA. 1993;90:4216–20.

    Article  PubMed  CAS  Google Scholar 

  33. Soussi T. The p53 tumour suppressor gene: a model for molecular epidemiology of human cancer. Mol Med Tod. 1996;2:32–7.

    Article  CAS  Google Scholar 

  34. Mendoza-Rodríguez CA, Cerbon MA. Tumor suppressor gene p53: mechanisms of action in cell proliferation and death. Rev Invest Clin. 2001;53:266–73.

    PubMed  Google Scholar 

  35. Hahn M, Serth J, Fislage R, et al. Polymerase chain reaction detection of a highly polymorphic VNTR segment in intron 1 of the human p53 gene. Clin Chem. 1993;39:549–50.

    PubMed  CAS  Google Scholar 

  36. Ito T, Seyama T, Hayashi T, et al. Hae III polymorphism in intron 1 of the human p53 gene. Human Genet. 1994;93:222.

    Article  CAS  Google Scholar 

  37. Lazar V, Hazard F, Bertin F, Janin N, Bellet D, Bressac B. Simple sequence repeat polymorphism within the p53 gene. Oncogene. 1993;8:1703–5.

    PubMed  CAS  Google Scholar 

  38. Peller S, Kopilova Y, Slutzki S, Halevy A, Kvitko K, Rother V. A novel polymorphism in intron 6 of the human p53 gene: a possible association with cancer predisposition and susceptibility. DNA Cell Biol. 1995;14:983–90.

    Article  PubMed  CAS  Google Scholar 

  39. Mavridou D, Gornall R, Campbell IG, Eccles DM. TP53 intron 6 polymorphism and the risk of ovarian and breast cancer. Br J Cancer. 1998;77:676–7.

    PubMed  CAS  Google Scholar 

  40. Hillebrandt S, Streffer C, Demidchik EP, Biko J, Reiners C. Polymorphisms in the p53 gene in thyroid tumours and blood samples of children from areas in Belarus. Mutat Res. 1997;381:201–7.

    PubMed  CAS  Google Scholar 

  41. Prosser J, Condie A. Biallelic ApaI polymorphism of the human p53 gene (TP53). Nucleic Acids Res. 1991;19:4799.

    Article  PubMed  CAS  Google Scholar 

  42. Buller RE, Skilling JS, Kaliszewski S, Niemann T, Anderson B. Absence of significant germline p53 mutations in ovarian cancer patients. Gynecol Oncol. 1995; 58:368–74.

    Article  PubMed  CAS  Google Scholar 

  43. Runnebaum IB, Tong XW, Konig R, et al. p53-based blood test for p53PIN3 and risk for sporadic ovarian cancer. Lancet. 1995;345:994.

    Article  PubMed  CAS  Google Scholar 

  44. Sjalander A, Birgander R, Athlin L, et al. p53 germline haplotypes associated with increased risk for colorectal cancer. Carcinogenesis. 1995;16:1461–4.

    Article  PubMed  CAS  Google Scholar 

  45. Birgander R, Sjalander A, Rannug A, et al. p53 polymorphisms and haplotypes in lung cancer. Carcinogenesis. 1995;16:2233–6.

    Article  PubMed  CAS  Google Scholar 

  46. Birgander R, Sjalander A, Zhou Z, Fan C, Beckman L, Beckman G. p53 polymorphisms and haplotypes in nasopharyngeal cancer. Hum Hered. 1996;46:49–54.

    PubMed  CAS  Google Scholar 

  47. Ge H, Lam WK, Lee J, et al. Detection and evaluation of p53 intron 2 polymorphism in lung carcinomas in Hong Kong. Int J Cancer. 1996;69:120–4.

    Article  PubMed  CAS  Google Scholar 

  48. Ruiz A, Puig S, Lynch M, Castel T, Estivell X. Retention of the CDKN2A locus and low frequency of point mutations in primary and metastatic cutaneous malignant melanoma. Int J Cancer. 1998;76:312–6.

    Article  PubMed  CAS  Google Scholar 

  49. Sauroja I, Smeds J, Vlaykova T, et al. Analysis of G(1)/S checkpoint regulators in metastatic melanoma. Genes Chromosomes Cancer. 2000;28:401–14.

    Article  Google Scholar 

  50. Foulkes WD, Flanders TY, Pollock PM, Hayward NK. The CDKN2A (p16) gene and human cancer. Mol Med. 1997;3:5–20.

    PubMed  CAS  Google Scholar 

  51. Pollock PM, Welch J, Hayward NK. Evidence for three suppressor loci on chromosome 9p involved in melanoma development. Cancer Res. 2001;61:1154–61.

    PubMed  CAS  Google Scholar 

  52. Huschtscha LI, Reddel RR. p16(INK4a) and the control of cellular proliferative life span. Carcinogenesis. 1999;20:921–6.

    Article  PubMed  CAS  Google Scholar 

  53. Soufir N, Basset-Seguin N. The INK4a-ARF locus: role in the genetic predisposition to familial melanoma and skin carcinogenesis. Bull Cancer. 2001;88:1061–7.

    PubMed  CAS  Google Scholar 

  54. Wagner SN, Wagner C, Briedigkeit L, Goos M. Homozygous deletion of the p16INK4a and the p15INK4b tumour suppressor genes in a subset of human sporadic cutaneous malignant melanoma. Br J Dermatol. 1998; 138:13–21.

    Article  PubMed  CAS  Google Scholar 

  55. Gartel AL, Tyner AL. Transcriptional regulation of the p21 (WAF/CIP1) gene. Exp Cell Res. 1999;246:280–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen M. Cabrera Morales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, J.L.S., Morales, C.M.C., Ortega, S.S. et al. Mutation and homozygous deletion analyses of genes that control the G1/S transition of the cell cycle in skin melanoma: p53, p21, p16 and p15. Clin Transl Oncol 7, 156–164 (2005). https://doi.org/10.1007/BF02708753

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708753

Key words

Navigation