Skip to main content
Log in

Role of ureogenesis in tackling problems of ammonia toxicity during exposure to higher ambient ammonia in the air-breathing walking catfishclarias batrachus

  • Articles
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

In the present study, the possible role of ureogenesis to avoid the accumulation of toxic ammonia to a lethal level under hyper-ammonia stress was tested in the air-breathing walking catfishClarias batrachus by exposing the fish at 25 mM NH4Cl for 7 days. Excretion of ammonia by the NH4Cl-exposed fish was totally suppressed, which was accompanied by significant accumulation of ammonia in different body tissues. The walking catfish, which is otherwise predominantly ammoniotelic, turned totally towards ureotelism from ammoniotelism with a 5-to 6-fold increase of urea-N excretion during exposure to higher ambient ammonia. Stimulation of ureogenesis was accompanied with significant increase of some of the key urea cycle enzymes such as carbamyl phosphate synthetase (urea cycle-related), argininosuccinate synthetase and argininosuccinate lyase both in hepatic and non-hepatic tissues. Due to this unique physiological strategy of turning towards ureotelism from ammoniotelism via the induced urea cycle, this air-breathing catfish is able to survive in very high ambient ammonia, which they face in certain seasons of the year in the natural habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ARG:

Arginase

ASL:

argininosuccinate lyase

ASS:

argininosuccinate synthetase

CPS:

carbamyl phosphate synthetase

GDH:

glutamate dehydrogenase

GS:

glutamine synthetase

NAG:

N-acetyl glutamate

OTC:

ornithine transcarbamylase

References

  • Anderson P M 2001 Urea and glutamine synthesis: environmental influences on nitrogen excretion; inFish physiology (eds) P A Wright and P M Anderson (New York: Academic Press) vol. 20, pp 239–277

    Google Scholar 

  • Campbell J W and Anderson P M 1991 Evolution of mitochondrial enzyme system in fish: the mitochondrial synthesis of glutamine and citrulline; inMolecular biology of fishes (eds) P W Hochachka and T P Mommsen (Elsevier: Amsterdam) vol. 1, pp 43–76

    Google Scholar 

  • Chew S F, Jin Y and Ip Y K 2001 The loachMisgurnus anguillicaudatus reduces amino acid catabolism and accumulates alanine and glutamine during aerial exposure;Physiol. Biochem. Zool. 74 266–237

    Article  Google Scholar 

  • Cooper A J L and Plum F 1987 Biochemistry and physiology of brain ammonia;Physiol. Rev. 67 440–519

    PubMed  CAS  Google Scholar 

  • Dabrowska H and Wlasow T 1986 Sublethal effect of ammonia on certain biochemical and haematological indicators in common carp;Comp. Biochem. Physiol. C83 179–184

    Google Scholar 

  • Felskie A K, Anderson P M and Wright P A 1998 Expression and activity of carbamyl phosphate synthetase III and ornithine urea cycle enzymes in various tissues of four fish species;Comp. Biochem. Physiol. B119 355–364

    Google Scholar 

  • Hopkins T E, Wood C M and Walsh P J 1995 Interactions of cortisol and nitrogen metabolism in the ureogenic gulf toadfishOpsanus beta;J. Exp. Biol. 198 2229–2235

    PubMed  CAS  Google Scholar 

  • Iwata K 1988 Nitrogen metabolism in the mudskipper,Periophthalmus cantonensis: changes in free amino acids and related compounds in various tissues under conditions of ammonia load with reference to its high ammonia tolerance;Comp. Biochem. Physiol. A91 499–508

    Article  Google Scholar 

  • Iwata K, Kajimura M and Sakamoto T 2000 Functional ureogenesis in the Gobiid fish,Mugilobius abei;J. Exp. Biol. 203 3703–3715

    PubMed  CAS  Google Scholar 

  • Jow L Y, Chew S F, Lim C B, Anderson P M and Ip Y K 1999 The marble gobyOxyeleotris marmoratus activates hepatic glutamine synthetase and detoxifies ammonia to glutamine during air exposure;J. Exp. Biol. 202 237–245

    PubMed  CAS  Google Scholar 

  • Julsrud E A, Walsh P J and Anderson P M 1998 N-acetyl-L-glutamate and the urea cycle in gulf toadfish (Opsanus beta) and other fish;Arch. Biochem. Biophys. 350 55–60

    Article  PubMed  CAS  Google Scholar 

  • Kong H, Edberg D D, Korte J J, Salo W L, Wright P A and Anderson P M 1998 Nitrogen excretion and expression of carbamoylphosphate synthetase III activity and mRNA in extrahepatic tissues of largemouth bass (Micropterus salmoides);Arch. Biochem. Biophys. 350 157–168

    Article  PubMed  CAS  Google Scholar 

  • Korte J J, Salo W L, Cabrera V M, Wright P A, Felskie A K and Anderson P M 1997 Expression of carbamoylphosphate synthetase III mRNA during the early stages of development and in muscle of adult trout (Oncorhynchus mykiss);J. Biol. Chem. 272 6270–6277

    Article  PubMed  CAS  Google Scholar 

  • Kun E and Kearney E B 1974 Ammonia; inMethods of enzymatic analysis. (ed.) H U Bergmeyer (New York: Academic Press) vol. 4, pp 1802–1806

    Google Scholar 

  • Liem K F 1987 Functional design of the air ventilation apparatus and overland escursions by teleosts;Fieldiana. Zool. 37 1–29

    Google Scholar 

  • Lim C B, Anderson P M, Chew S F and Ip Y K 2001 Reduction in the rates of protein and amino acid catabolism to slow down the accumulation of endogenous ammonia: a strategy potentially adopted by mudskipper (Periophthalmodon schlosseri andBoleophthalmus boddaerti) during aerial exposure in constant darkness;J. Exp. Biol. 204 1605–1614

    PubMed  CAS  Google Scholar 

  • Lindley T E, Scheiderer C L, Walsh P J, Wood C M, Bergman H L, Bergman A L, Laurent P, Wilson P and Anderson P M 1999 Muscle as the primary site of urea cycle enzyme activity in an alkaline lake-adapted tilapia,Oreochromis alcalicus grahami;J. Biol. Chem. 274 29858–29861

    Article  PubMed  CAS  Google Scholar 

  • McKenzie D J and Randall D J 1990 DoesAmia calva aestivate?;Fish Physiol. Biochem. 8 147–158

    Article  Google Scholar 

  • Meijer A J, Lamers W H and Chamuleau R A F M 1990 Nitrogen metabolism and ornithine cycle function;Physiol. Rev. 70 701–748

    PubMed  CAS  Google Scholar 

  • Mommsen T P and Walsh P J 1989 Evolution of urea synthesis in vertebrates. The piscine connection;Science 243 72–75

    Article  PubMed  CAS  Google Scholar 

  • Mommsen T P and Walsh P J 1991 Urea synthesis in fishes: evolutionary and biochemical perspectives; inBiochemistry and molecular biology of fishes (eds) P W Hochachka and T P Mommsen (Amsterdam: Elsevier) vol. 1, pp 137–163

    Google Scholar 

  • Moore R B and Kauffman N G 1970 Simultaneous determination of citrulline and urea using diacetyl monoxime;Anal. Biochem. 33 263–272

    Article  PubMed  CAS  Google Scholar 

  • Randall D J, Wood C M, Perry S F, Bergman H, Maloiy G M O, Mommsen T P and Wright PA 1989 Urea excretion as a strategy for survival in a fish living in an alkaline environment;Nature (London) 337 165–166

    Article  CAS  Google Scholar 

  • Read L T 1971 The presence of high ornithine-urea cycle enzymes activity in the teleostOpsanus tau;Comp. Biochem. Physiol. B39 409–419

    Google Scholar 

  • Saha N and Das L 1999 Stimulation of ureogenesis in the perfused liver of an Indian air-breathing catfish,Clarias batrachus, infused with different concentrations of ammonium chloride;Fish Physiol. Biochem. 21 303–311

    Article  CAS  Google Scholar 

  • Saha N, Das L and Dutta S 1999 Types of carbamyl phosphate synthetases and subcellular localization of urea cycle and related enzymes in air-breathing walking catfish,Clarias batrachus;J. Exp. Zool. 283 121–130

    Article  CAS  Google Scholar 

  • Saha N, Das L, Dutta S and Goswami U C 2001 Role of ureogenesis in the mud-dwelled singhi catfish (Heteropneustes fossilis) under condition of water shortage;Comp. Biochem. Physiol. B128 137–146

    Google Scholar 

  • Saha N, Dkhar J, Anderson P M and Ratha B K 1997 Carbamyl phosphate synthetases in an air-breathing teleost,Heteropneustes fossilis;Comp. Biochem. Physiol. B116 57–63

    Google Scholar 

  • Saha N, Dkhar J and Ratha B K 1995 Induction of ureogenesis in perfused liver of a freshwater teleost,Heteropneustes fossilis, infused with different concentrations of ammonium chloride;Comp. Biochem. Physiol. B112 733–741

    Google Scholar 

  • Saha N, Dutta S and Bhattacharjee A 2002a Role of amino acid metabolism in an air-breathing catfish,Clarias batrachus in response to exposure to a high concentration of exogenous ammonia;.Comp. Biochem. Physiol. B133 235–250

    Google Scholar 

  • Saha N, Kharbuli Z Y, Bhattacharjee A, Goswami C and Häussinger D 2002b Effect of alkalinity (pH 10) on ureogenesis in the air-breathing walking catfish,Clarias batrachus;.Comp. Biochem. Physiol. A132 353–364

    Google Scholar 

  • Saha N and Ratha B K 1987 Active ureogenesis in a freshwater air-breathing teleost,Heteropneustes fossilis;J. Exp. Zool. 241 137–141

    Article  CAS  Google Scholar 

  • Saha N and Ratha B K 1989 Comparative study of ureogenesis in freshwater, air-breathing teleosts;J. Exp. Zool. 252 1–8

    Article  Google Scholar 

  • Saha N and Ratha B K 1990 Alterations in excretion pattern of ammonia and urea in a freshwater air-breathing teleost,Heteropneustes fossilis (Bloch) during hyper-ammonia stress;Indian J. Exp. Biol. 28 597–599

    CAS  Google Scholar 

  • Saha N and Ratha B K 1994 Induction of ornithine-urea cycle in a freshwater teleost,Heteropneustes fossilis, exposed to high concentrations of ammonium chloride;Comp. Biochem. Physiol. B108 315–325

    Google Scholar 

  • Saha N and Ratha B K 1998 Ureogenesis in Indian air-breathing teleosts: adaptation to environmental constraints;Comp. Biochem. Physiol. A120 195–208

    Google Scholar 

  • Tsui T K N, Randall D J, Chew S F, Jin Y, Wilson J M and Ip Y K 2002 Accumulation of ammonia in the body and NH3 volatilization from alkaline regions of the body surface during ammonia loading and exposure to air in the weather loachMisgurnus anguillicaudatus;J. Exp. Biol. 205 651–659

    PubMed  CAS  Google Scholar 

  • Walsh J P, Danulat E and Mommsen T P 1990 Variation in urea excretion in the gulf toadfishOpsanus beta;Mar. Biol. 106 323–328

    Article  CAS  Google Scholar 

  • Walsh P J, Tucker B C and Hopkins T E 1994 Effects of confinement and crowding on ureogenesis in the gulf toadfishOpsanus beta;J. Exp. Biol. 191 195–206

    PubMed  CAS  Google Scholar 

  • Wilkie M P 1997 Mechanism of ammonia excretion across fish gills;Comp. Biochem. Physiol. A118 39–50

    Article  Google Scholar 

  • Wood C M 1993 Ammonia and urea metabolism and excretion; inThe physiology of fishes (ed.) D H Evans (Boca Raton: CRC Press) pp 379–425

    Google Scholar 

  • Wood C M, Hopkins T E, Hogstrand C and Walsh P J 1995 Pulsatile urea excretion in the ureogenic toadfishOpsanus beta: an analysis of rates and routes;J. Exp. Biol. 198 273–281

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmalendu Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, N., Datta, S., Biswas, K. et al. Role of ureogenesis in tackling problems of ammonia toxicity during exposure to higher ambient ammonia in the air-breathing walking catfishclarias batrachus . J Biosci 28, 733–742 (2003). https://doi.org/10.1007/BF02708434

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708434

Keywords

Navigation