Skip to main content
Log in

A philicity based analysis of adsorption of small molecules in zeolites

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Adsorption of small molecules like CH4, CO and NH3 into the acid sites of zeolites is analysed as an interaction between an electrophile and a nucleophile. Global reactivity descriptors like softness and electrophilicity, and local reactivity descriptors like the Fukui function, local softness and local philicity are calculated within density functional as well as Hartree-Fock frameworks using both Mulliken and Hirshfeld population analysis schemes. The HSAB principle and the best electrophile-nucleophile combination suggest that the reaction between the NH3 and Brönsted acid site of the zeolite is the strongest. Interaction between the zeolite and a small probe molecule takes place through the most electrophilic atom of one with the most nucleophilic atom of the other. This result is in conformity with those provided by the frontier orbital theory and the local HSAB principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. van Santen R A and Kramer G J 1995Chem. Rev. 95 637;

    Article  Google Scholar 

  2. Kramer G J, van Santen R A, Emeis C A and Nowak A K 1993Nature (London) 363 529

    Article  CAS  Google Scholar 

  3. Sauer J, Ugliengo P, Garrone E and Saunders V R 1994Chem. Rev. 94 2095

    Article  CAS  Google Scholar 

  4. Vetrivel R and Catlow C R A 1992 InModelling of structure and reactivity of zeolites (ed.) C R A Catlow (London: Academic Press) p. 217

    Google Scholar 

  5. Stave M S and Nicholas J B 1995J. Phys. Chem. 99 15046; Bates S P and Dwyer J 1993J. Phys. Chem. 97 5897; Langenaeker W, Goussement N, De Proft F and Geerlings P 1994J. Phys. Chem. 98 3010

    Article  CAS  Google Scholar 

  6. Krishnamurti S M, Roy R K, Vetrivel R, Iwata S and Pal S 1997J. Phys. Chem. 101 7253

    Google Scholar 

  7. Pal S and Chandrakumar K R S 2000J. Am. Chem. Soc. 122 4145

    Article  CAS  Google Scholar 

  8. Deka R C, Vetrivel R and Pal S 1999J. Phys. Chem. A103 5978

    Google Scholar 

  9. Deka R C, Ajitha D and Hirao K 2003J. Phys. Chem. B107 8574

    Google Scholar 

  10. Parr R G and Yang W 1989Density functional theory of atoms and molecules (New York: Oxford University Press)

    Google Scholar 

  11. Geerlings P, De Proft F and Langenaeker W 2003Chem. Rev. 103 1793

    Article  CAS  Google Scholar 

  12. Parr R G, Donnelly D A, Levy M and Palke W E 1978J. Chem. Phys. 68 3801

    Article  CAS  Google Scholar 

  13. Sen K D and Jorgenson C K 1987Electronegativity: Structure and bonding (Berlin: Springer-Verlag) vol 66

    Google Scholar 

  14. Parr R G and Pearson R G 1983J. Am. Chem. Soc. 105 7512

    Article  CAS  Google Scholar 

  15. Parr R G and Mingos D M P 1993Chemical hardness: Structure and bonding (Berlin: Springer) vol 80

    Google Scholar 

  16. Pearson R G 1997Chemical hardness: Application from molecules to solid (Weinheim: Wiley-VCH)

    Google Scholar 

  17. Parr R G, Szentpály L and Liu S 1999J. Am. Chem. Soc. 121 1922

    Article  CAS  Google Scholar 

  18. Maynard A T, Huang M, Rice W G and Covell D G 1998Proc. Natl. Acad. Sci. USA 95 11578

    Article  CAS  Google Scholar 

  19. Parr R G and Yang W 1984J. Am. Chem. Soc. 106 1976

    Article  Google Scholar 

  20. Ayers P W and Levy M 2000Theor. Chem. Acc. 103 353

    CAS  Google Scholar 

  21. Yang W and Parr R G 1985Proc. Natl. Acad. Sci. USA 82 1960

    Google Scholar 

  22. Chattaraj P K, Maiti B and Sarkar U 2003J. Phys. Chem. A107 4973

    Google Scholar 

  23. Chattaraj P K, Lee H and Parr R G 1991J. Am. Chem. Soc. 113 1855

    Article  CAS  Google Scholar 

  24. Gazquez J L and Mendez F 1994J. Phys. Chem. 98 4591, and references therein

    Article  CAS  Google Scholar 

  25. Fukui K 1982Science 218 747

    Article  CAS  Google Scholar 

  26. Roy R K 2004J. Phys. Chem. A108 4934

    Google Scholar 

  27. Roy R K, Usha V, Paulovi J and Hirao K 2005J. Phys. Chem. A109 4601

    Google Scholar 

  28. Page 1812: Geerlings P, De Proft F and Langenaeker W 2003Chem. Rev. 103 1793

    Article  CAS  Google Scholar 

  29. Roy RK, Krishnamurti S, Geerlings P and Pal S 1998J. Phys. Chem. A102 3746

    Google Scholar 

  30. Olah J, van Alsenoy C and Sannigrahi A B 2002J. Phys. Chem. A106 3885; Tishchenko O, Pham-Tran N, Kryachko E S and Nguyen T M 2001J. Phys. Chem. A105 8709; Fuentealba P and Contreras R R InReviews of modern quantum chemistry (ed.) K D Sen (Singapore: World Scientific) pp 1013–1052

    Google Scholar 

  31. Roy R K 2003J. Phys. Chem. A107 397; Roy R K 2003J. Phys. Chem. A107 10428

    Google Scholar 

  32. Pérez P, Toro-Labbé A, Aizman A and Contreras R 2002J. Org. Chem. 67 4747 ; Domingo L R, Aurell M J, Pérez P and Contreras R 2003J. Org. Chem. 68 3884 ; Domingo L R, Aurell M J, Pérez P and Contreras R 2002J. Phys. Chem. A106 6871 ; In the abstract of the last paper, the major problems associated with relative electrophilicity over local electrophilicity are highlighted

    Article  Google Scholar 

  33. Meneses L, Tiznado W, Contreras R and Fuentealba P 2004Chem. Phys. Lett. 383 181. See also, Domingo L R, Pérez P and Contreras R 2004Tetrahedron 60 6585, where it has been argued that the local electrophilicity can help elucidate the intramolecular selectivity properly

    Article  CAS  Google Scholar 

  34. Morrell C, Grand A and Toro-Labbe A 2005J. Phys. Chem. A109 205

    Google Scholar 

  35. Chatterjee A, Ebina T and Iwasaki T 2001J. Phys. Chem. A105 10694

    Google Scholar 

  36. Chattaraj PK and Sarkar U 2003Proceedings of IECMD (This paper was withdrawn due to delay in publication). Portions of this work were presented in TTC 2002 at IACS, Kolkata and TCS 2004 in BARC, Mumbai

  37. Roy R K, Pal S and Hirao K 1999J. Chem. Phys. 110 8236; Roy R K, Hirao K and Pal S 2000J. Chem. Phys. 113 1372; Roy R K, Tajima N and Hirao K 2001J. Phys. Chem. A105 2117; Roy R K 2003J. Phys. Chem. A107 397; Roy R K 2003J. Phys. Chem. A107 10428

    Article  CAS  Google Scholar 

  38. Mañanes A, Duque F, Méndez F, López M J and Alonso J A 2003J. Chem., Phys. 119 5128

    Article  Google Scholar 

  39. Legon A C 1999Angew. Chem., Int. Ed. 38 2686; Legon A C and Millen D J 1987J. Am. Chem. Soc. 109 356

    Article  Google Scholar 

  40. Chattaraj P K 2001J. Phys. Chem. A105 511; Melin J, Aparicio F, Subramanian V, Galvan M and Chattaraj P K 2004J. Phys. Chem. A108 2487; Hocquet A, Toro-Labbé A and Chermette H 2004J. Mol. Struct. (Theochem.) 686 213

    Google Scholar 

  41. Meneses L, Tiznado W, Contreras R and Fuentealba P 2004Chem. Phys. Lett. 383 181

    Article  CAS  Google Scholar 

  42. Li Y and Evans J N S 1995J. Am. Chem. Soc. 117 7756

    Article  CAS  Google Scholar 

  43. Chattaraj P K, Sarkar U, Parthasarathi R and Subramanian V 2005Int. J. Quantum Chem. 101 690

    Article  CAS  Google Scholar 

  44. Parthasarathi R, Padmanabhan J, Elango M, Subramanian V and Chattaraj P K 2004Chem. Phys. Lett. 394 225

    Article  CAS  Google Scholar 

  45. Elango M, Parthasarathi R, Subramanian V and Chattaraj P KInt. J. Quantum Chem. (in press); Roy D R, Parthasarathi R, Padmanabhan J, Sarkar U, Subramanian V and Chattaraj P K (unpublished work)

  46. Deka R C, Roy R K and Hirao K 2000Chem. Phys. Lett. 332 576

    Article  CAS  Google Scholar 

  47. Becke A D 1988J. Chem. Phys. 88 2547

    Article  CAS  Google Scholar 

  48. Lee C, Yang W and Parr R G 1988Phys. Rev. B37 786

    Google Scholar 

  49. Delley B and Ellis D E 1982J. Chem. Phys. 76 1949

    Article  CAS  Google Scholar 

  50. DMol3 Module of Cerius2 by Accelrys Corp. San Diego, CA

  51. Hirshfeld F L 1977Theor. Chim. Acta B44 129

    Article  Google Scholar 

  52. Yang W and Mortier W J 1986J. Am. Chem. Soc. 108 5708

    Article  CAS  Google Scholar 

  53. Frisch Met al 1998 Gaussian 98 A.7, Gaussian, Inc, Pittsburgh, PA

    Google Scholar 

  54. Chattaraj P K 2001J. Phys. Chem. A105 511; Ayers P W 2005J. Chem. Phys. 122 141102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratim Kumar Chattaraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuán, A., Galván, M. & Chattaraj, P.K. A philicity based analysis of adsorption of small molecules in zeolites. J Chem Sci 117, 541–548 (2005). https://doi.org/10.1007/BF02708360

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708360

Keywords

Navigation