Skip to main content
Log in

Evidence for a role of Ethylene-Insensitive 2 gene in the regulation of the oxidative stress response in Arabidopsis

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The Arabidopsis Ethylene-Insensitive 2 (EIN2) gene has been shown to be involved in mediating the oxidative stress response; however, little is known about the underlying mechanisms involved. In this study, we found that the ethylene-insensitive mutant ein2-1 showed enhanced tolerance to oxidative stresses caused by both paraquat (PQ) and hydrogen peroxide as well as alleviated oxidative damage. Moreover, higher transcript levels of a choroplast Cu/Zn superoxide dismutase gene CSD2 and a catalase gene CAT3 and, consequently, higher activities of superoxide dismutase (SOD) and catalase (CAT), were detected in ein2-1 plants than in wild-type plants in the absence or presence of PQ. These results suggest that the ein2-1 mutation results in constitutive activation of CSD2 and CAT3 genes and increases in the activities of SOD and CAT and, consequently, enhanced oxidative stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

FW:

fresh weight

H2O2 :

hydrogen peroxide

MDA:

malondialdehyde

MS:

Murashige and Skoog

PQ:

paraquat

ROS:

reactive oxygen species

RT-PCR:

reverse transcription-PCR

SOD:

superoxide dismutase

WT:

wild-type Arabidopsis ecotype Columbia Col-0

References

  • Ahlfors R., Lång S., Overmyer K., Jaspers P., Brosché M., Tauriainen A., Kollist H., Tuominen H., Belles-Boix E., Piippo M., Inzé D., Palva E.T., Kangasjärvi J. 2004. Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell, 16: 1925–1937.

    Article  PubMed  CAS  Google Scholar 

  • Alonso J.M., Hirayama T., Roman G., Nourizadeh S., Ecker J.R. 1999. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 284: 2148–2152.

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp C., Fridovich I. 1971. Superoxide dismutase: improved assay and an assay applicable to PAGE. Anal. Biochem., 44: 276–287.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Dat J., Vandenabeele S., Vranovà E., Van Montagu M., Inzé D., Van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci., 57: 779–795.

    Article  PubMed  CAS  Google Scholar 

  • Devi S.R., Prasad M.N.V. 1998. Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: Response of antioxidant enzymes and antioxidants. Plant Sci., 138: 157–165.

    Article  CAS  Google Scholar 

  • Dhindsa R.S., Dhindsa P., Thorpe T.A. 1987. Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide ismutase and catalase. J. Exp. Bot., 32: 93–101.

    Article  Google Scholar 

  • Dirk I., Marc V.M. 1995. Oxidative stress in plants. Curr. Opin. Biotechnol., 6: 153–158.

    Article  Google Scholar 

  • Guzmán P., Ecker J.R. 1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell, 2: 513–523.

    Article  PubMed  Google Scholar 

  • Feng Z., Jin-Kui G., Ying-Li Y., Wen-Liang H., Li-Xin Z. 2004. Changes in the pattern of antioxidant enzymes in wheat exposed to water deficit and rewatering. Acta Physiol. Plant., 26: 345–353.

    Article  Google Scholar 

  • Fujibe T., Saji H., Arakawa K., Yabe N., Takeuchi Y., Yamamoto K.T. 2004. A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation. Plant Physiol., 134: 275–285.

    Article  PubMed  CAS  Google Scholar 

  • Hart J.J., Ditomaso J.M. 1994. Sequestration and oxygen radical detoxification as mechanisms of paraquat resistance. Weed Sci., 42: 27–284.

    Google Scholar 

  • Kami ska-Ro ek E., Pukacki P.M. 2004. Effect of water deficit on oxidative stress and degradation of cell membranes in needles of Norway spruce (Picea abies). Acta Physiol. Plant., 26: 431–442.

    Article  Google Scholar 

  • Kliebenstein D.J., Monde R., Last R.L. 1998. Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol., 118: 637–650.

    Article  PubMed  CAS  Google Scholar 

  • Kurepa J., Smalle J., Van Montagu M., Inez D. 1998. Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. Plant J., 14: 759–764.

    Article  PubMed  CAS  Google Scholar 

  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7: 405–410.

    Article  PubMed  CAS  Google Scholar 

  • Mittler R., Vanderauwera S., Gollery M., Breusegem F.V. 2004. Reactive oxygen gene network of plants. Trends in Plant Sci., 9: 490–498.

    Article  CAS  Google Scholar 

  • Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant., 15: 473–497.

    Article  CAS  Google Scholar 

  • Okuda T., Matsuda Y., Yamanaka A., Sagisaka S. 1991. Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol., 197: 1265–1267.

    Article  Google Scholar 

  • Orendi G., Zimmermann P., Baar C., Zentgraf U. 2001. Loss of stress-induced expression of catalase3 during leaf senescence in Arabidopsis thaliana is restricted to oxidative stress Plant Sci., 161: 301–314.

    Article  PubMed  CAS  Google Scholar 

  • Overmyer K., Brosche M., Kangasjärvi J. 2003. Reactive oxygen species and hormonal control of cell death. Trends in Plant Sci., 8: 335–342.

    Article  CAS  Google Scholar 

  • Paepe A.D., Vuylsteke M., Hummelen P.V., Zabeau M., Straeten D.V.D. 2004. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. Plant J., 39: 537–559.

    Article  PubMed  CAS  Google Scholar 

  • Prasa S. M., Dwivedi R., Zeeshan M., Singh R. 2004. UV-B and cadmium induced changes in pigments, photosynthetic electron transport activity, antioxidant levels and antioxidative enzyme activities of Riccia sp. Acta Physiol. Plant., 26: 423–430.

    Article  Google Scholar 

  • Purba E., Preston C., Powles S.B. 1995. The mechanism of resistance to paraquat is strongly temperature dependent in resistant Hordeum leporinum Link and H. glaucum Steud. Planta, 196: 464–468.

    Article  CAS  Google Scholar 

  • Rao M.V., Davis R.D. 1999. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J., 17: 603–614.

    Article  PubMed  CAS  Google Scholar 

  • Rao M.V., Paliyath G., Ormrod D.P., Murr D.P., Watkins C.B. 1997. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes (salicylic acid-mediated oxidative damage requires H2O2). Plant Physiol., 115: 137–149.

    Article  PubMed  CAS  Google Scholar 

  • Rao K.V.M., Stresty T.V.S. 2000. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci., 157: 113–128.

    Article  Google Scholar 

  • Scandalios J.G. 2002. Oxidative stress responses- what have genome-scale studies taught us? Genome Biology, 3: 10191–10196.

    Article  Google Scholar 

  • Shah K., Kumar R.G., Verma S., Dubey R.S. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci., 161: 1135–1144.

    Article  CAS  Google Scholar 

  • Vranovà E., Inzé D., Van Breusegem F. 2002. Signal transduction during oxidative stress. J. Exp. Bot., 53: 1227–1236.

    Article  PubMed  Google Scholar 

  • Wang K., Li H., Ecker J.R. 2002. Ethylene biosynthesis and signaling networks. Plant Cell, 14: S131-S151.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqing Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, S., Jiang, S. & Zhang, R. Evidence for a role of Ethylene-Insensitive 2 gene in the regulation of the oxidative stress response in Arabidopsis . Acta Physiol Plant 28, 417–425 (2006). https://doi.org/10.1007/BF02706624

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706624

Key words

Navigation