Skip to main content
Log in

Corrosion of bio implants

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

Chemical stability, mechanical behaviour and biocompatibility in body fluids and tissues are the basic requirements for successful application of implant materials in bone fractures and replacements. Corrosion is one of the major processes affecting the life and service of orthopaedic devices made of metals and alloys used as implants in the body. Among the metals and alloys known, stainless steels (SS), Co-Cr alloys and titanium and its alloys are the most widely used for the making of biodevices for extended life in human body. Incidences of failure of stainless steel implant devices reveal the occurrence of significant localised corroding viz., pitting and crevice corrosion. Titanium forms a stable TiO2 film which can release titanium particles under wear into the body environment. To reduce corrosion and achieve better biocompatibility, bulk alloying of stainless steels with titanium and nitrogen, surface alloying by ion implantation of stainless steels and titanium and its alloys, and surface modification of stainless steel with bioceramic coatings are considered potential methods for improving the performance of orthopaedic devices. This review discusses these issues in depth and examines emerging directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arumugam T K 1998In vitro and in vivo electrochemical corrosion studies on modified stainless steel materials for orthopaedic implant applications. Ph D thesis, University of Madras, Chennai

    Google Scholar 

  • Arumugam T K, Rajeswari S, Subbaiyan M 1997In vitro electrochemical investigations of titanium stabilized stainless steels for applications as orthopaedic implants.Bull. Electrochem. 13: 103–106

    Google Scholar 

  • Arumugam T K, Rajeswari S, Subbaiyan M 1998In vitro electrochemical investigations on super austenitic stainless steels for applications as orthopaedic implants. InBiomedical materials and devices — New frontiers (ed) M Jayabalan (Trivandrum: SCTIMST) pp 61–65

    Google Scholar 

  • Arumugam T K, Rajeswari S, Subbaiyan M 1998 Electrochemical behaviour of advanced stainless steel implant material in saline physiological solution with calcium and phosphate ions and serum proteins.Trans. Indian Inst. Met. 51: 417–22

    Google Scholar 

  • Asokamani R, Balu R, Bhuvaneswaran N, Kamachi Mudali U 2000In vitro corrosion investigations on nitrogen ion implanted Ti-6Al-7Nb alloy.Proc. Seventh Int. Symp. on Electrochemical Methods in Corrosion Research (EMCR), Hungary, Paper No. 110

  • Bates J B 1973 Cathodic protection to prevent crevice corrosion of stainless steel in halide media.Corrosion 29: 28–32

    Google Scholar 

  • Breme J, Biehl V, Hoffmann A 2000 Tailor-made composites on titanium for medical devices.Adv. Eng. Mater. 2: 270–275

    Article  Google Scholar 

  • Chai C, Nissan B B, Pyke S, Evans L 2001 Sol-gel derived hydroxylapatite coatings for biomédical applications.Surface modification technologies on CD (ASM International)

  • Chu T M G, Halloran T W, Hollister S J, Fainberg C E 2001 Hydroxyapatite implants designed with internal architecture.J. Mater. Sci. Mater. Med, 12: 471–478

    Article  Google Scholar 

  • Clayton C R 1986 Passivity mechanisms in stainless steels. MO-N Synergism Report no. N00014-85-K-0437, New York

  • Clayton C R, Lu Y C 1986 A bipolar model of the passivity of stainless steel: The role of Mo addition.J. Electrochem. Soc. 13: 2465–2473

    Article  Google Scholar 

  • Dobbs H S 1982 Fracture of titanium orthopaedic implants.J. Mater. Sci. 17: 2398–94

    Article  Google Scholar 

  • Fontana M G, Greene N D 1987Corrosion engineering (New York: McGraw-Hill)

    Google Scholar 

  • Geetha M, Kamachi Mudali U, Pandey N D, Gogia A K, Asokamani R, Baldev Raj 2001In vitro corrosion behaviour of laser nitrided Ti-13Nb-13Zr alloy.Proc. of the First Asian-Pacific Conference and 6th National Convention on Corrosion on CD, Nov 28–30

  • GeethaM, Kamachi Mudali U, Gogia A K, Asokamani R, Baldev Raj 2002 Influence of microstructural changes on the corrosion behaviour of beta-rich titanium alloys.Corros. Sci. (communicated)

  • Groot K de, Wolke J G C, Jansen J A 1998 Calcium phosphate coatings for medical implants.Inst. Mech. Eng. 212: 137–147

    Google Scholar 

  • Helmus M N, Tweden K 1995 Materials selection. InEncyclopedic handbook of biomaterials and bioengineering, Part A: Materials (eds) D L Wise, D J Trantolo, D E Altobelli, M J Yaszemski, J D Gresser, E R Schwartz (New York: Marcel Dekker) pp 27–45

    Google Scholar 

  • Hench L L, Ethridge E C 1982Biomaterials: An interfacial approach (New York: Academic Press)

    Google Scholar 

  • Hench L L 1985 Inorganic biomaterials. InAdvances in chemistry series 245: Materials chemistry — an emerging discipline (eds) L V Interranate, L A Caspar, A B Ellis (Washington DC: American Chemical Society) p. 523

    Google Scholar 

  • Hench L L 1991 Bioceramics: From concept to clinic.J. Am. Ceram. Soc. 14: 1487–1510

    Article  Google Scholar 

  • Hu J, Zhano Z J, Li L X 1993 Corrosion fatigue resistance of surgical implant stainless steels and titanium alloys.Corros. Sci. 35: 587–97

    Article  Google Scholar 

  • Kamachi Mudali U 1993Studies on pitting, intergranular corrosion and passive film of nitrogen-bearing austenitic stainless steels. Ph D thesis, University of Madras

  • Kamachi Mudali U, Dayal R K 2000 Influence of nitrogen addition on crevice corrosion resistance of nitrogen-bearing austenitic stainless steels.J. Mater. Sci. 35: 1799–1803

    Article  Google Scholar 

  • Kamachi Mudali U, Katada Y 2001 Electrochemical atomic force microscopic studies on passive films on nitrogen-bearing austenitic stainless steels.Electrochim. Acta 46: 3735–3742

    Article  Google Scholar 

  • Kamachi Mudali U, Dayal R K, Gill T P S, Gnanamoorthy J B 1986 Influence of microstructure and pitting corrosion resistance of austenitic welds metals.Werkstoffe Korrosion 37: 637–643

    Google Scholar 

  • Kamachi Mudali U, Dayal R K, Gill T P S, Gnanamoorthy J B 1990 Pitting corrosion resistance of nitrogen-added AISI type 304 SS weld metal with different heat inputs.Corrosion 37: 454–460

    Google Scholar 

  • Kamachi Mudali U, Dayal R K, Gnanamoorthy J B, Rodriguez P 1996a Influence of thermal ageing on the intergranular corrosion resistance of nitrogen-bearing austenitic stainless steels.Metal. Trans. A27: 2881–2887

    Article  Google Scholar 

  • Kamachi Mudali U, Dayal R K, Gnanamoorthy J B, Rodriguez P 1996b Pitting corrosion studies on nitrogen-bearing types 304, 316 and 317 stainless steels.Mater. Trans. Jap. Inst. Metal. 37: 1568–1573

    Google Scholar 

  • Kamachi Mudali U, Dayal R K, Gnanamoorthy J B, Rodriguez P 1996c Relationship between pitting and intergranular corrosion of nitrogen-bearing austenitic stainless steels.ISIJ Int. 36: 799–806

    Google Scholar 

  • Kamachi Mudali U, Dayal R K, Venkadesan S, Gnanamoorthy J B 1996d Influence of titanium addition on pitting, crevice corrosion and intergranular corrosion resistances of type 316 stainless steels.Met. Mater. Process. 8: 139–146

    Google Scholar 

  • Kamachi Mudali U, Dayal R K, Gnanamoorthy J B, Rodriguez P 1997a Role of nitrogen in improving the passive film stability and pitting corrosion resistance of austenitic stainless steels.Trans. Indian Inst. Met. 50: 37–47

    Google Scholar 

  • Kamachi Mudali U, Sundararajan T, Nair K G M, Dayal R K 1997b Nitrogen ion implantation of type 316 stainless steel to improve intergranular and pitting corrosion resistances.Corrosion and its control (eds) A S Khanna, M K Totlani, S K Singh (Amsterdam: Elsevier) vol 2, pp 566–573

    Google Scholar 

  • Kamachi Mudali U, Ningshen S, Dayal R K 1999a Study of passive films of nitrogen-bearing austenitic stainless steels using electrochemical impedance spectroscopy.Bull. Electrochem. 15: 74–78

    Google Scholar 

  • KamachiMudali U, Ningshen S, Tyagi A K, Dayal R K 1999b Influence of metallurgical and chemical variables on the pitting corrosion behaviour of nitrogen-bearing austenitic stainless steels.Mater. Sci. Forum 318-320: 495–502

    Google Scholar 

  • KamachiMudali U, Reynders B, Stratmann M 1999c Localised corrosion behaviour of Fe-N model alloys.Corros. Sci. 41: 179–189

    Article  Google Scholar 

  • KamachiMudali U, Shankar P, Sundararaman D, Dayal R K 1999d Microstructural and electrochemical studies in thermally aged type 316LN stainless steels.Mater. Sci. Tech. 15: 1451–1453

    Google Scholar 

  • KamachiMudali U, Sundararajan T, Loganathan E, Nair K G M, Dayal R K 1999e Pitting and intergranular corrosion resistances of nitrogen ion implanted type 304 stainless steel.Mater. Sci. Forum 318-320: 531–538

    Article  Google Scholar 

  • KamachiMudali U, Pujar M G, Dayal R K 2000 On the pitting corrosion resistance of as-welded and thermally aged nitrogen-bearing type 316 stainless steel weld metal.Mater. Sci. Technol. 16: 393–398

    Google Scholar 

  • Kasuga T, Mizuno T, Watanabe M, Nogami M, Niinomi M 2001 Calcium phosphate invert glass-ceramic coatings joined by self-development of compositionally gradient layers on a titanium alloy.Biomaterials 22: 577–582

    Article  Google Scholar 

  • Khor K A, Wang Y 2001 Functionally Graded Coatings for Biomédical Applications.Surface Modification Technologies on CD (ASM International)

  • Kruger J 1979 Fundamental aspects of corrosion of metallic implants. InCorrosion and degradation of implant materials (eds) B C Syrett, A Acharya, ASTM STP 684, pp 107–113

  • Lin J H C, Kuo K H, Ding S J, Ju C P 2001 Surface reaction of stoichiometric and calcium deficient hydroxyapatite in simulated body fluid.J. Mater. Sci. Mater. Med. 12: 731–741

    Article  Google Scholar 

  • Liu Y, Layrolle P, Bruijn D, van Blitterswijk J, de Groot C K 2001 Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy.J. Biomed. Mater. Res. 57: 327–335

    Article  Google Scholar 

  • Li F, Feng Q L, Cui F Z, Li H D, Schubert H 2002 A simple biomimetic method for calcium phosphate coating.Surf. Coat. Technol. (in press)

  • Lugscheider E, Remer P, Nyland A 2001 High velocity oxy fuel spraying: An alternative to the established APS-process for production of bioactive coatings.Surface modification technologies on CD (ASM International)

  • Park E, Condrate Sr R A 1999 Graded coatings of hydroxyapatite and titanium by atmospheric plasma spraying.Mater. Lett. 40: 228–234

    Article  Google Scholar 

  • Park J P, Lakes R S 1992Biomaterials: An introduction 2nd edn (New York: Plenum)

    Google Scholar 

  • Pfaff H G, Willmann G, Pothig R 1993 Properties of HA-Coatings. InBioceramics (eds) P Ducheyne, D Christiansen (London: Butterworth-Heinemann) vol 6, pp 421–424

    Google Scholar 

  • Pholer OEM 1986 Failure of orthopaedic metallic implants.ASM handbook on failure analysis and prevention 9th edn (Metals Park, OH: ASM International) vol 11, p 670

    Google Scholar 

  • Platon F, Fournier P, Rouxel S 2001 Tribological behaviour of DLC coatings compared to different materials used in hip-joint prostheses.Wear 250: 227–236

    Article  Google Scholar 

  • Pujar M G, Kamachi Mudali U, Dayal R K, Gill T P S 1992 Susceptibility of as-welded and thermally aged type 316LN weldments towards pitting and intergranular corrosion.Corrosion 48: 579–586

    Article  Google Scholar 

  • Shreir L L, Jarman R A, Brustein G T 1994Corrosion. Vol.1: Metal/environment reactions, Vol. 2: Corrosion control 3rd edn (London: Butterworth Heinemann)

    Google Scholar 

  • Silver F H 1994Biomaterials medical devices and tissue engineering: An intergrated approach. (London: Chapman & Hall)

    Google Scholar 

  • Silver F, Doillon C 1989Biocompatibility: Interactions of biological and implantable materials (New York: VCH Publishers) vol. 1

    Google Scholar 

  • Sivakumar M 1992In vitro corrosion and failure investigations on stainless steel orthopaedic implant devices. PhD thesis, University of Madras, Chennai

    Google Scholar 

  • Sivakumar M, Rajeswari S 1992 Investigations of failures in stainless steel orthopaedic implant devices: Pit induced stress corrosion cracking.J. Mater. Sci. Lett. 11: 1039–1042

    Article  Google Scholar 

  • Sivakumar M, Kamachi Mudali U, Rajeswari S 1993a Compatibility of ferritic and duplex stainless steels as implant materials.J. Mater. Sci. 28: 6081–6086

    Article  Google Scholar 

  • Sivakumar M, Kamachi Mudali U, Rajeswari S 1993b Nitrogen-bearing austenitic stainless steels -A promising replacement for currently used 316L stainless steel orthopaedic implant material.Proc. Twelfth Inter. Corros. Congress, Houston (TX), vol. 3B, pp 1942–1948

  • Sivakumar M, Kamachi Mudali U, Rajeswari S 1993c Pit-induced corrosion failures in stainless steel orthopaedic implant devices.Proc. Twelfth Inter. Corros. Congress, Houston (TX), vol. 3B, pp 1949–1956

  • Sivakumar M, Kamachi Mudali U, Rajeswari S 1994 Investigation of failures in stainless steel orthopaedic implant devices: Fatigue failure due to improper fixation of a compression bone plate.J. Mater. Sci. Lett. 13: 142–145

    Article  Google Scholar 

  • Sivakumar M, Kamachi Mudali U, Rajeswari S 1994In vitro electrochemical investigations of stainless steels for orthopaedic implant applications.J. Mater. Eng. Perform. 3: 744–753

    Article  Google Scholar 

  • Sivakumar M, Kamachi Mudali U, Rajeswari S 1994a Investigation of failures in stainless steel orthopaedic implant device.Steel Res. 65: 76–79

    Google Scholar 

  • Sivakumar M, Kamachi Mudali U, Rajeswari S 1994b Investigation of fatigue failure of a stainless steel orthopaedic implant device.J. Mater. Eng. Perform. 3: 111–114

    Article  Google Scholar 

  • Sivakumar M, Suresh Kumar Dhanadurai K, Rajeswari S, Thulasiraman V 1995a Failures in stainless steel orthopaedic implant devices: A survey.J. Mater. Sci. Lett. 14: 351–354

    Article  Google Scholar 

  • Sivakumar M, Kamachi Mudali U, Rajeswari S 1995b Investigation of failures in stainless steel orthopaedic implant devices: Pit induced fatigue cracks.J. Mater. Sci. Lett. 14: 148–151

    Article  Google Scholar 

  • Sousa S R, Barbosa M A 1991 Electrochemistry of AISI 316L stainless steel in calcium phosphate and protein solutions.J. Mater. Sci. Mater. Med. 2: 19–26

    Article  Google Scholar 

  • Sridhar T M 2001Synthesis, electrophoretic deposition and characterization of hydroxyapatite coatings on type 316L SSfor orthopaedic applications. Ph D thesis, University of Madras, Chennai

    Google Scholar 

  • Sridhar T M, Arumugam T K, Rajeswari S, Subbaiyan M 1997 Electrochemical behaviour of hydroxyapatite-coated stainless steel implants.J. Mater. Sci. Lett. 16: 1964–67

    Article  Google Scholar 

  • Sridhar T M, Rajeswari S, Subbaiyan M 1998 Effect of current density on hydroxyapatite coatings on 316L stainless steel and its polarisation behaviour. InBiomédical materials and devices — New frontiers (ed) M Jayabalan (Trivandrum: SCTIMST) pp 52–56

    Google Scholar 

  • Sridhar T M, Rajeswari S, Subbaiyan M 1999In vitro electrochemical characterisation of hydroxyapatite coated stainless steel implants in the presence of serum proteins.Bull. Electrochem. 15: 139–142

    Google Scholar 

  • Sridhar TM, Kamachi Mudali U, Rajeswari S, Subbaiyan M 2000a Electrochemical impedance studies on hydroxyapatite coated type 316L stainless steel.Proc. Seventh Int. Symp. on Electrochemical Methods in Corrosion Research (EMCR) Hungary, Paper No. 110

  • Sridhar T M, Kamachi Mudali U, Rajeswari S, Subbaiyan M 2000b Sintering effects on hydroxyapatite coated type 316L stainless steels and their impedance behaviour in Ringer’s solution.Proc. Int. Conf. on Advances in Composites — 2000 (eds) E D Dwarakadasa, K G Krishnadas Nair (Bangalore: FAME) 256–273

    Google Scholar 

  • Sridhar T M, Kamachi Mudali U, Subbaiyan M 2002a Preparation and characterisation of hydroxyapatite coated 316L stainless steel.Corros. Sci. 45: 237–252

    Article  Google Scholar 

  • Sridhar T M, Kamachi Mudali U, Subbaiyan M 2002b Electrophoretic deposition of hydroxyapatite coated type 316L stainless steel and its corrosion performance.Corrosion (communicated)

  • Sridhar T M, Kamachi Mudali U, Subbaiyan M 2002c Sintering treatments on hydroxyapatite coatings — an electrochemical impedance study.Proc. Int. Conf. on Advances in Surface Science and Engineering — INSURE (in press)

  • Sridhar T M, Kamachi Mudali U, Subbaiyan M 2002d Sintering atmosphere and temperature effects on hydroxyapatite coated type 316L stainless steels.Corros. Sci. (communicated)

  • Subbaiyan M, Sundararajan T, Rajeswari S, Kamachi Mudali U, Nair K G M, Thampi N S 1996aIn vitro evaluation of corrosion resistance of nitrogen ion implanted titanium in simulated body fluid.Advances in surface engineering (eds) P K Datta (London: Royal Society of Chemistry) pp 26–37

    Google Scholar 

  • Subbaiyan M, Veerabadran KM, Thampi N S, Krishan K, Kamachi Mudali U, Dayal R K 1996b Pitting corrosion studies on nitrogen ion implanted type 316L SS for biomédical applications.Advances in surface engineering (eds) P K Datta (London: Royal Society of Chemistry) pp 38–7

    Google Scholar 

  • Sundararajan T 1998In vitro corrosion evaluation and surface characterization of nitrogen ion implantated titanium, Ti6Al4V and Ti-modified stainless steel. Ph D thesis, University of Madras, Chennai

    Google Scholar 

  • Sundararajan T, Kamachi Mudali U, Nair K G M, Rajeswari S, Subbaiyan M 1996 Electrochemical and XPS investigations of nitrogen ion implanted Ti6 Al4V alloy.Proc. Discuss. Meeting on Surface Sci. Eng. (SURE 96) (Indian Inst. Met.) pp 234–242

  • Sundararajan T, Kamachi Mudali U, Nair K G M, Rajeswari S, Subbaiyan M 1997 Localised corrosion behaviour of argon ion implanted titanium modified type 316L stainless steel for application as orthopaedic implant devices.Corrosion and its control (eds) A S Khanna, M K Totlani, S K Singh (Amsterdam: Elsevier) vol. 2, pp 1121–1127

    Google Scholar 

  • Sundararajan T, Kamachi Mudali U, Nair K G M, Rajeswari S, Subbaiyan M 1998a Electrochemical studies on nitrogen ion implanted Ti6Al4V alloy.Anti-Corros. Methods Mater. 45: 162–166

    Article  Google Scholar 

  • Sundararajan T, Kamachi Mudali U, Nair K G M, Rajeswari S, Subbaiyan M 1998b Surface characterisation of electrochemically formed passive film of nitrogen ion implanted Ti6Al4V alloy.Mater. Trans. Jpn. Inst. Met. 39: 759–764

    Google Scholar 

  • Sundararajan T, Kamachi Mudali U, Nair K G M, Rajeswari S, Subbaiyan M 1999a Effects of nitrogen ion implantation on the localised corrosion behaviour of titanium modified type 316L stainless steel in simulated body fluid.J. Mater. Eng. Perform. 8: 252–260

    Article  Google Scholar 

  • Sundararajan T, Kamachi Mudali U, Nair K G M, Rajeswari S, Subbaiyan M 1999bIn vitro corrosion evaluation of nitrogen ion implanted titanium in simulated body fluid.Werkstoffe Korros. 50: 344–349

    Article  Google Scholar 

  • Sundararajan T, Kamachi Mudali U, Nair K G M, Rajeswari S, Subbaiyan M 1999c Corrosion behaviour of nitrogen ion implanted titanium modified type 316 stainless steel in comparison with argon and oxygen ion implantations.Mater. Sci. Forum 318-320: 553–560

    Google Scholar 

  • Sundararajan T, Kamachi Mudali U, Nair K G M, Rajeswari S, Subbaiyan M 2000In vitro corrosion evaluation of nitrogen ion implanted titanium in simulated body fluid.Trans. Indian Inst. Met. 52: 413–421

    Google Scholar 

  • Symko O G, Park W, Kieda D 2001 Quasicrystal thin films for biomedical applications.Surface modification technologies on CD (ASM International)

  • Syrett B C, Wing S S 1978 An electrochemical investigation of fretting corrosion of surgical implant materials.Corrosion 11: 379–386

    Google Scholar 

  • Tanabe H, Kamachi Mudali U, Togashi K, Misawa T 1998In situ pH measurements during localised corrosion of type 316LN stainless steel using scanning electrochemical microscopy.J. Mater. Sci. Lett. 17: 551–553

    Article  Google Scholar 

  • Thair L, Kamachi Mudali U, Rajagopalan S, Nair K G M, Asokamani R, Baldev Raj 2001 Role of alloying elements on the passive films of nitrogen ion implanted Ti-6Al-4V and Ti-6Al-7Nb alloys.Proc. First Asian-Pacific Conference and 6th National Convention on Corrosion on CD, Nov 28–30

  • Thair L, Kamachi Mudali U, Bhuvaneswaran N, Nair K G M, Asokamani R 2002 Nitrogen ion implantation andin vitro corrosion behaviour of Ti-6Al-7Nb alloy.Corros. Sci. 44: 2027–2039

    Article  Google Scholar 

  • TIFAC 1996 V:08:V:ESDR, DST, Material & Processing: Technology Vision 2020, September, New Delhi

  • Ukai H, Murakami K 2001 Surface characterization of Ca implanted titanium for biomaterials.Surface Modification Technologies on CD (ASM International)

  • Veerabadran K M 1999Nitrogen ion implantation for improving localized corrosion resistance of surgical grade and advanced type 316L stainless steels for orthopaedic implant devices. Ph D thesis, University of Madras, Chennai

    Google Scholar 

  • Veerabadran K M, Kamachi Mudali U, Nair K G M, Subbaiyan M 1996 Surface modification of surgical grade stainless steel orthopaedic implants by ion implantation and investigation of localised corrosion.Proc. Discuss. Meeting on Surface Sci. Eng. (SURE 96) (Indian. Inst. Met.) pp 226–233

  • Veerabadran K M, Kamachi Mudali U, Nair K G M, Subbaiyan M 1999 Improvements in localised corrosion resistance of nitrogen ion implanted type 316L stainless steel orthopaedic implant devices.Mater. Sci. Forum 318-320: 561–568

    Google Scholar 

  • Von Recum A F 1999 Handbook ofbiomaterials evaluation — Scientific, technical and clinical testing of implant materials 2nd edn (Philadelphia: Taylor & Francis)

    Google Scholar 

  • Wang M, Deb S, Bonfield W 2000 Chemically coupled hydroxyapatite-polyethylene composites: processing and characterization.Mater. Lett. 44: 119–124

    Article  Google Scholar 

  • Williams D F 1981 Electrochemical aspects of corrosion in the physiological environment. InFundamental aspects of biocompatibility (ed) D F Willams D F (Boca Raton, FL: CRC press) vol. 1, pp 11–20

    Google Scholar 

  • Yamada H 1970Strength of biological materials (Baltimore: Williams & Williams)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamachimudali, U., Sridhar, T.M. & Raj, B. Corrosion of bio implants. Sadhana 28, 601–637 (2003). https://doi.org/10.1007/BF02706450

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706450

Keywords

Navigation